convolution_grad_kernel.cc 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/kernels/sparse/convolution_grad_kernel.h"
16
#include "paddle/phi/kernels/copy_kernel.h"
17
#include "paddle/phi/kernels/funcs/blas/blas.h"
18
#include "paddle/phi/kernels/funcs/math_function.h"
19 20
#include "paddle/phi/kernels/sparse/cpu/convolution.h"

21 22
#include "paddle/phi/api/ext/dispatch.h"

23 24 25 26 27 28 29 30 31 32 33
namespace phi {
namespace sparse {

// rulebook:
//[
//  [kernel_index],
//  [in_i],
//  [out_i],
//]
// x_grad = out_grad * transpose(kenrel)
// kernel_grad = transpose(x) * out_grad
34 35 36 37 38 39 40 41 42 43 44 45 46
template <typename T, typename IntT = int>
void Conv3dGradCPUKernel(const CPUContext& dev_ctx,
                         const SparseCooTensor& x,
                         const DenseTensor& kernel,
                         const DenseTensor& rulebook,
                         const SparseCooTensor& out_grad,
                         const std::vector<int>& paddings,
                         const std::vector<int>& dilations,
                         const std::vector<int>& strides,
                         const int groups,
                         const bool subm,
                         SparseCooTensor* x_grad,
                         DenseTensor* kernel_grad) {
47 48 49 50
  const auto& kernel_dims = kernel.dims();
  const int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];
51
  const IntT* rulebook_ptr = rulebook.data<IntT>();
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

  const int rulebook_len = rulebook.dims()[1];

  DenseTensorMeta in_features_meta(
      x.dtype(), {rulebook_len, in_channels}, DataLayout::NCHW);
  DenseTensorMeta d_x_features_meta(
      x.dtype(), {rulebook_len, in_channels}, DataLayout::NCHW);
  DenseTensorMeta out_grad_features_meta(
      x.dtype(), {rulebook_len, out_channels}, DataLayout::NCHW);
  phi::DenseTensor in_features =
      phi::Empty(dev_ctx, std::move(in_features_meta));
  phi::DenseTensor d_x_features =
      phi::Empty(dev_ctx, std::move(d_x_features_meta));
  phi::DenseTensor out_grad_features =
      phi::Empty(dev_ctx, std::move(out_grad_features_meta));

  T* in_features_ptr = in_features.data<T>();
  T* d_x_features_ptr = d_x_features.data<T>();
  T* out_grad_features_ptr = out_grad_features.data<T>();
71
  *kernel_grad = phi::EmptyLike<T>(dev_ctx, kernel);
72
  T* d_kernel_ptr = kernel_grad->data<T>();
73
  memset(d_kernel_ptr, 0, sizeof(T) * kernel_grad->numel());
74

Z
zhangkaihuo 已提交
75
  int half_kernel_size = kernel_size / 2;
76
  auto blas = phi::funcs::GetBlas<CPUContext, T>(dev_ctx);
77
  DenseTensor x_grad_indices =
78
      phi::EmptyLike<IntT>(dev_ctx, x.non_zero_indices());
79 80 81
  DenseTensor x_grad_values = phi::EmptyLike<T>(dev_ctx, x.non_zero_elements());
  T* x_grad_values_ptr = x_grad_values.data<T>();
  memset(x_grad_values_ptr, 0, sizeof(T) * x_grad_values.numel());
Z
zhangkaihuo 已提交
82
  memset(d_x_features_ptr, 0, sizeof(T) * d_x_features.numel());
83 84 85 86 87
  phi::Copy<CPUContext>(dev_ctx,
                        x.non_zero_indices(),
                        dev_ctx.GetPlace(),
                        false,
                        &x_grad_indices);
88
  x_grad->SetMember(x_grad_indices, x_grad_values, x.dims(), true);
Z
zhangkaihuo 已提交
89

90
  std::vector<IntT> offsets(kernel_size + 1), counter(kernel_size, 0);
91 92 93
  for (int i = 0; i < rulebook_len; i++) {
    counter[rulebook_ptr[i]] += 1;
  }
94
  IntT offset = 0, max_count = 0;
95 96 97
  for (int i = 0; i < kernel_size; i++) {
    offsets[i] = offset;
    offset += counter[i];
Z
zhangkaihuo 已提交
98 99 100
    if (i < half_kernel_size) {
      max_count = std::max(max_count, counter[i]);
    }
101 102 103
  }
  offsets[kernel_size] = offset;

Z
zhangkaihuo 已提交
104
  if (subm) {
105 106 107 108 109 110 111 112 113 114
    phi::funcs::sparse::SubmPreProcess<T, CPUContext>(
        dev_ctx,
        x,
        kernel,
        out_grad.non_zero_elements(),
        in_channels,
        out_channels,
        half_kernel_size,
        kernel_grad,
        &x_grad_values);
Z
zhangkaihuo 已提交
115 116 117 118 119
    if (max_count == 0) {
      return;
    }
  }

120 121 122 123 124 125 126 127 128 129
  Gather<T, IntT>(x.non_zero_elements().data<T>(),
                  rulebook_ptr + rulebook_len,
                  rulebook_len,
                  in_channels,
                  in_features_ptr);
  Gather<T, IntT>(out_grad.non_zero_elements().data<T>(),
                  rulebook_ptr + rulebook_len * 2,
                  rulebook_len,
                  out_channels,
                  out_grad_features_ptr);
Z
zhangkaihuo 已提交
130

131 132
  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
Z
zhangkaihuo 已提交
133
    if (counter[i] <= 0 || (subm && i == half_kernel_size)) {
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
      continue;
    }

    const int M = counter[i];
    const int K = in_channels;
    const int N = out_channels;
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    T* tmp_out_grad_ptr = out_grad_features_ptr + offsets[i] * out_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * in_channels * out_channels;
    T* tmp_d_x_ptr = d_x_features_ptr + offsets[i] * out_channels;
    T* tmp_d_kernel_ptr = d_kernel_ptr + i * in_channels * out_channels;

    // call gemm: d_kernel = transpose(x) * out_grad
    // (in_channels, n) * (n, out_channels)
    blas.GEMM(CblasTrans,
              CblasNoTrans,
              M,
              N,
              K,
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_out_grad_ptr,
              static_cast<T>(0),
              tmp_d_kernel_ptr);

    // call gemm: d_x = out_grad * transpose(kernel)
    // (n, out_channels) * (out_channels, in_channels)
    blas.GEMM(CblasNoTrans,
              CblasTrans,
              M,
              K,
              N,
              static_cast<T>(1),
              tmp_out_grad_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_d_x_ptr);
  }

  // 4. scatter
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  Scatter<T, IntT>(d_x_features_ptr,
                   rulebook.data<IntT>() + rulebook_len,
                   rulebook_len,
                   in_channels,
                   x_grad_values_ptr);
}

template <typename T, typename Context>
void Conv3dGradKernel(const Context& dev_ctx,
                      const SparseCooTensor& x,
                      const DenseTensor& kernel,
                      const DenseTensor& rulebook,
                      const SparseCooTensor& out_grad,
                      const std::vector<int>& paddings,
                      const std::vector<int>& dilations,
                      const std::vector<int>& strides,
                      const int groups,
                      const bool subm,
                      SparseCooTensor* x_grad,
                      DenseTensor* kernel_grad) {
  PD_DISPATCH_INTEGRAL_TYPES(
      x.non_zero_indices().dtype(), "Conv3dGradCPUKernel", ([&] {
        Conv3dGradCPUKernel<T, data_t>(dev_ctx,
                                       x,
                                       kernel,
                                       rulebook,
                                       out_grad,
                                       paddings,
                                       dilations,
                                       strides,
                                       groups,
                                       subm,
                                       x_grad,
                                       kernel_grad);
      }));
209 210 211 212 213
}

}  // namespace sparse
}  // namespace phi

214
PD_REGISTER_KERNEL(sparse_conv3d_grad,
215 216 217 218 219 220 221
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::Conv3dGradKernel,
                   float,
                   double) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}