tester_helper.h 39.0 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
20
#include <functional>
L
luotao1 已提交
21
#include <memory>
T
Tao Luo 已提交
22
#include <string>
L
luotao1 已提交
23
#include <thread>  // NOLINT
L
luotao1 已提交
24
#include <unordered_map>
25
#include <utility>
L
luotao1 已提交
26
#include <vector>
Y
Yiqun Liu 已提交
27 28 29
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
30
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
31
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
32 33 34
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
35
#include "paddle/fluid/inference/api/helper.h"
36
#include "paddle/fluid/inference/api/paddle_inference_api.h"
Y
Yan Chunwei 已提交
37
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
38
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
39
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
40
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
41 42
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
43
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
44
DEFINE_string(infer_model, "", "model path");
45 46
DEFINE_string(fp32_model, "", "FP32 model path");
DEFINE_string(int8_model, "", "INT8 model path");
L
luotao1 已提交
47
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
48
DEFINE_string(refer_result, "", "reference result for comparison");
49
DEFINE_int32(batch_size, 1, "batch size");
50
DEFINE_bool(ernie_large, false, "Test ernie large");
51 52
DEFINE_bool(with_accuracy_layer, true,
            "Calculate the accuracy while label is in the input");
53
DEFINE_bool(enable_fp32, true, "Enable FP32 type prediction");
54 55
DEFINE_bool(enable_bf16, false, "Enable BF16 type prediction");
DEFINE_bool(enable_int8, false, "Enable INT8 type prediction");
56 57 58
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
// setting iterations to 0 means processing the whole dataset
DEFINE_int32(iterations, 0, "number of batches to process");
L
luotao1 已提交
59 60 61
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
62 63
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
64 65
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
66
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
67
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
L
luotao1 已提交
68
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
69 70 71
DEFINE_bool(warmup, false,
            "Use warmup to calculate elapsed_time more accurately. "
            "To reduce CI time, it sets false in default.");
72
DEFINE_int32(warmup_iters, 1, "Number of batches to process during warmup.");
L
luotao1 已提交
73

74 75
DEFINE_bool(enable_profile, false, "Turn on profiler for fluid");
DEFINE_int32(cpu_num_threads, 1, "Number of threads for each paddle instance.");
76

L
luotao1 已提交
77 78 79
namespace paddle {
namespace inference {

80 81
using paddle::framework::proto::VarType;

82 83 84 85 86 87 88 89 90 91 92 93 94
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

95
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
96
  const auto *analysis_config =
97
      reinterpret_cast<const AnalysisConfig *>(config);
98
  if (use_analysis) {
99
    LOG(INFO) << *analysis_config;
100 101
    return;
  }
102
  LOG(INFO) << analysis_config->ToNativeConfig();
103
}
Y
Yan Chunwei 已提交
104

105 106 107 108 109 110 111 112
void CheckError(float data_ref, float data) {
  if (std::abs(data_ref) > 1) {
    CHECK_LE(std::abs((data_ref - data) / data_ref), FLAGS_accuracy);
  } else {
    CHECK_LE(std::abs(data_ref - data), FLAGS_accuracy);
  }
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
class Barrier {
 public:
  explicit Barrier(std::size_t count) : _count(count) {}
  void Wait() {
    std::unique_lock<std::mutex> lock(_mutex);
    if (--_count) {
      _cv.wait(lock, [this] { return _count == 0; });
    } else {
      _cv.notify_all();
    }
  }

 private:
  std::mutex _mutex;
  std::condition_variable _cv;
  std::size_t _count;
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
template <typename T>
class TensorReader {
 public:
  TensorReader(std::ifstream &file, size_t beginning_offset,
               std::vector<int> shape, std::string name)
      : file_(file), position_(beginning_offset), shape_(shape), name_(name) {
    numel_ = std::accumulate(shape_.begin(), shape_.end(), size_t{1},
                             std::multiplies<size_t>());
  }

  PaddleTensor NextBatch() {
    PaddleTensor tensor;
    tensor.name = name_;
    tensor.shape = shape_;
    tensor.dtype = GetPaddleDType<T>();
    tensor.data.Resize(numel_ * sizeof(T));

    file_.seekg(position_);
    file_.read(static_cast<char *>(tensor.data.data()), numel_ * sizeof(T));
    position_ = file_.tellg();

    if (file_.eof()) LOG(ERROR) << name_ << ": reached end of stream";
    if (file_.fail())
      throw std::runtime_error(name_ + ": failed reading file.");

    return tensor;
  }

 protected:
  std::ifstream &file_;
  size_t position_;
  std::vector<int> shape_;
  std::string name_;
  size_t numel_;
};

std::shared_ptr<std::vector<PaddleTensor>> GetWarmupData(
    const std::vector<std::vector<PaddleTensor>> &test_data,
    int num_images = FLAGS_warmup_batch_size) {
  int test_data_batch_size = test_data[0][0].shape[0];
  auto iterations = test_data.size();
  auto all_test_data_size = iterations * test_data_batch_size;
  PADDLE_ENFORCE_LE(static_cast<size_t>(num_images), all_test_data_size,
                    platform::errors::InvalidArgument(
                        "The requested quantization warmup data size must be "
                        "lower or equal to the test data size. But received"
                        "warmup size is %d and test data size is %d. Please "
                        "use --warmup_batch_size parameter to set smaller "
                        "warmup batch size.",
                        num_images, all_test_data_size));

  PaddleTensor images;
  images.name = "image";
  images.shape = {num_images, 3, 224, 224};
  images.dtype = PaddleDType::FLOAT32;
  images.data.Resize(sizeof(float) * num_images * 3 * 224 * 224);

  PaddleTensor labels;
  labels.name = "label";
  labels.shape = {num_images, 1};
  labels.dtype = PaddleDType::INT64;
  labels.data.Resize(sizeof(int64_t) * num_images);

  for (int i = 0; i < num_images; i++) {
    auto batch = i / test_data_batch_size;
    auto element_in_batch = i % test_data_batch_size;
    std::copy_n(static_cast<float *>(test_data[batch][0].data.data()) +
                    element_in_batch * 3 * 224 * 224,
                3 * 224 * 224,
                static_cast<float *>(images.data.data()) + i * 3 * 224 * 224);

    std::copy_n(static_cast<int64_t *>(test_data[batch][1].data.data()) +
                    element_in_batch,
                1, static_cast<int64_t *>(labels.data.data()) + i);
  }

  auto warmup_data = std::make_shared<std::vector<PaddleTensor>>(2);
  (*warmup_data)[0] = std::move(images);
  (*warmup_data)[1] = std::move(labels);
  return warmup_data;
}

void SetInputs(std::vector<std::vector<PaddleTensor>> *inputs,
               int32_t batch_size = FLAGS_batch_size) {
  std::ifstream file(FLAGS_infer_data, std::ios::binary);
  if (!file) {
    FAIL() << "Couldn't open file: " << FLAGS_infer_data;
  }

  int64_t total_images{0};
  file.read(reinterpret_cast<char *>(&total_images), sizeof(total_images));
  LOG(INFO) << "Total images in file: " << total_images;

  std::vector<int> image_batch_shape{batch_size, 3, 224, 224};
  std::vector<int> label_batch_shape{batch_size, 1};
  auto images_offset_in_file = static_cast<size_t>(file.tellg());
  auto labels_offset_in_file =
      images_offset_in_file + sizeof(float) * total_images * 3 * 224 * 224;

  TensorReader<float> image_reader(file, images_offset_in_file,
                                   image_batch_shape, "image");
  TensorReader<int64_t> label_reader(file, labels_offset_in_file,
                                     label_batch_shape, "label");

  auto iterations_max = total_images / batch_size;
  auto iterations = iterations_max;
  if (FLAGS_iterations > 0 && FLAGS_iterations < iterations_max) {
    iterations = FLAGS_iterations;
  }
  for (auto i = 0; i < iterations; i++) {
    auto images = image_reader.NextBatch();
    auto labels = label_reader.NextBatch();
    inputs->emplace_back(
        std::vector<PaddleTensor>{std::move(images), std::move(labels)});
  }
}

248
// Compare result between two PaddleTensor
L
luotao1 已提交
249
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
250
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
251
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
252
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
253 254
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
255
    auto &ref_out = ref_outputs[i];
256 257
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
258
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
259 260
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
261 262 263 264 265 266 267 268 269 270 271

#define COMPARE(paddle_type, type, func)                        \
  case paddle_type: {                                           \
    type *pdata = static_cast<type *>(out.data.data());         \
    type *pdata_ref = static_cast<type *>(ref_out.data.data()); \
    for (size_t j = 0; j < size; ++j) {                         \
      func(pdata_ref[j], pdata[j]);                             \
    }                                                           \
    break;                                                      \
  }

T
tensor-tang 已提交
272
    switch (out.dtype) {
273 274 275 276 277 278 279 280 281
      COMPARE(PaddleDType::INT64, int64_t, EXPECT_EQ);
      COMPARE(PaddleDType::FLOAT32, float, CheckError);
      COMPARE(PaddleDType::INT32, int32_t, EXPECT_EQ);
      COMPARE(PaddleDType::UINT8, uint8_t, EXPECT_EQ);
      COMPARE(PaddleDType::INT8, int8_t, EXPECT_EQ);
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "VarMessageToVarType: Unsupported dtype %d",
            static_cast<int>(out.dtype)));
L
luotao1 已提交
282
    }
283
#undef COMPARE
L
luotao1 已提交
284 285 286
  }
}

287 288 289 290 291 292 293 294 295 296 297 298
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
299 300 301 302 303 304 305 306 307 308 309 310

#define COMPARE(paddle_type, type, func)                     \
  case paddle_type: {                                        \
    type *pdata = static_cast<type *>(out.data.data());      \
    type *pdata_ref = ref_out.data<type>(&place, &ref_size); \
    EXPECT_EQ(size, static_cast<size_t>(ref_size));          \
    for (size_t j = 0; j < size; ++j) {                      \
      func(pdata_ref[j], pdata[j]);                          \
    }                                                        \
    break;                                                   \
  }

311
    switch (out.dtype) {
312 313 314 315 316 317 318 319 320
      COMPARE(PaddleDType::INT64, int64_t, EXPECT_EQ);
      COMPARE(PaddleDType::FLOAT32, float, CheckError);
      COMPARE(PaddleDType::INT32, int32_t, EXPECT_EQ);
      COMPARE(PaddleDType::UINT8, uint8_t, EXPECT_EQ);
      COMPARE(PaddleDType::INT8, int8_t, EXPECT_EQ);
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "VarMessageToVarType: Unsupported dtype %d",
            static_cast<int>(out.dtype)));
321
    }
322
#undef COMPARE
323 324 325
  }
}

326
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
327
    const PaddlePredictor::Config *config, bool use_analysis = true) {
328
  const auto *analysis_config =
329
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
330
  if (use_analysis) {
331
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
332
  }
333 334
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
335 336
}

337
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
338

339
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
340
                                                   int *num_ops) {
341
  std::unordered_map<std::string, int> res;
342
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
343 344 345 346 347 348
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
349 350 351 352
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
353 354
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
355 356 357 358
      ++num;
    }
  }
  *num_ops = num;
359
  return *fusion_status;
T
Tao Luo 已提交
360 361
}

T
Tao Luo 已提交
362
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
363 364
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
365
                       std::string params_filename = "params",
N
nhzlx 已提交
366 367
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
368
  // Set fake_image_data
369 370 371 372 373
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0,
                    platform::errors::InvalidArgument(
                        "In SetFakeImageInput, expected test_all_data = false, "
                        "but now test_all_data=",
                        FLAGS_test_all_data));
374 375 376 377 378 379 380 381 382 383 384
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
385
  if (feed_names) {
386 387 388 389 390 391 392
    PADDLE_ENFORCE_EQ(
        feed_names->size(), feed_target_shapes.size(),
        platform::errors::InvalidArgument(
            "The size of feeds_names and size of "
            "feed_target_shapes must be equal, but now feeds_names "
            "size is %d and feed_target_shapes size is %d",
            feed_names->size(), feed_target_shapes.size()));
T
tensor-tang 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
407
    size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1},
T
tensor-tang 已提交
408 409 410 411 412 413
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
414 415
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
416
    }
T
Tao Luo 已提交
417 418 419 420
  }
  (*inputs).emplace_back(input_slots);
}

421 422 423 424 425 426 427 428 429 430 431 432
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
433 434 435 436 437 438 439 440 441 442 443
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
L
luotao1 已提交
444 445
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
446 447
    } else if (input.dtype == PaddleDType::UINT8) {
      ZeroCopyTensorAssignData<uint8_t>(tensor.get(), input.data);
L
luotao1 已提交
448 449 450 451 452
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
453

L
luotao1 已提交
454 455
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
456
                      std::vector<std::vector<PaddleTensor>> *outputs,
457 458
                      int num_threads, int tid,
                      const VarType::Type data_type = VarType::FP32) {
L
luotao1 已提交
459 460 461 462 463
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
464 465 466 467
  int iterations = 1;
  if (FLAGS_warmup_iters > 1)
    iterations = std::min(FLAGS_warmup_iters, static_cast<int>(inputs.size()));
  outputs->resize(iterations);
L
luotao1 已提交
468
  Timer warmup_timer;
469
  double elapsed_time = 0;
L
luotao1 已提交
470
  if (!FLAGS_zero_copy) {
471 472 473 474 475
    for (int i = 0; i < iterations; ++i) {
      warmup_timer.tic();
      predictor->Run(inputs[i], &(*outputs)[i], batch_size);
      elapsed_time += warmup_timer.toc();
    }
L
luotao1 已提交
476
  } else {
477 478 479 480 481
    for (int i = 0; i < iterations; ++i) {
      warmup_timer.tic();
      predictor->ZeroCopyRun();
      elapsed_time += warmup_timer.toc();
    }
482
  }
483 484 485
  auto batch_latency = elapsed_time / iterations;
  PrintTime(batch_size, 1, num_threads, tid, batch_latency, iterations,
            data_type);
486
  if (FLAGS_enable_profile) {
L
luotao1 已提交
487 488 489
    paddle::platform::ResetProfiler();
  }
}
490

L
luotao1 已提交
491 492
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
493
                   std::vector<std::vector<PaddleTensor>> *outputs,
494
                   int num_threads, int tid,
495 496
                   const VarType::Type data_type = VarType::FP32,
                   float *sample_latency = nullptr) {
L
luotao1 已提交
497
  int num_times = FLAGS_repeat;
498
  int iterations = inputs.size();  // process the whole dataset ...
499 500
  if (FLAGS_iterations > 0 &&
      FLAGS_iterations < static_cast<int64_t>(inputs.size()))
501 502 503 504 505
    iterations =
        FLAGS_iterations;  // ... unless the number of iterations is set
  outputs->resize(iterations);
  LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads
            << ", run " << num_times << " times...";
L
luotao1 已提交
506 507
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
508
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
509
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
510
#endif
511
  int predicted_num = 0;
L
luotao1 已提交
512
  if (!FLAGS_zero_copy) {
513
    for (int i = 0; i < iterations; i++) {
514
      run_timer.tic();
L
luotao1 已提交
515
      for (int j = 0; j < num_times; j++) {
516
        predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size);
517
      }
518 519 520 521 522 523
      elapsed_time += run_timer.toc();

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
524
    }
L
luotao1 已提交
525
  } else {
526
    for (int i = 0; i < iterations; i++) {
L
luotao1 已提交
527 528 529 530 531 532
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
533 534 535 536 537

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
538 539
    }
  }
540

Y
Yiqun Liu 已提交
541
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
542
  ProfilerStop();
Y
Yiqun Liu 已提交
543
#endif
N
nhzlx 已提交
544

545 546
  auto batch_latency = elapsed_time / (iterations * num_times);
  PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency,
547
            iterations, data_type);
548 549 550 551

  if (sample_latency != nullptr)
    *sample_latency = batch_latency / FLAGS_batch_size;

L
luotao1 已提交
552 553 554
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
555 556
    benchmark.SetBatchSize(FLAGS_batch_size);
    benchmark.SetLatency(batch_latency);
L
luotao1 已提交
557
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
558 559 560
  }
}

L
luotao1 已提交
561 562 563
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
564
    std::vector<std::vector<PaddleTensor>> *outputs, bool use_analysis = true,
565 566
    const VarType::Type data_type = VarType::FP32,
    float *sample_latency = nullptr) {
L
luotao1 已提交
567
  auto predictor = CreateTestPredictor(config, use_analysis);
568
  if (FLAGS_warmup) {
569
    PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0, data_type);
570
  }
571 572
  PredictionRun(predictor.get(), inputs, outputs, 1, 0, data_type,
                sample_latency);
L
luotao1 已提交
573 574
}

L
luotao1 已提交
575
void TestMultiThreadPrediction(
576
    const PaddlePredictor::Config *config,
577
    const std::vector<std::vector<PaddleTensor>> &inputs,
578
    std::vector<std::vector<PaddleTensor>> *outputs, int num_threads,
T
Tao Luo 已提交
579
    bool use_analysis = true) {
L
luotao1 已提交
580
  std::vector<std::thread> threads;
L
luotao1 已提交
581 582 583 584 585
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
586

L
luotao1 已提交
587 588 589 590
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
591
      std::vector<std::vector<PaddleTensor>> outputs_tid;
L
luotao1 已提交
592
      auto &predictor = predictors[tid];
593 594 595 596
      if (FLAGS_warmup) {
        PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads,
                         tid);
      }
597
      PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid);
L
luotao1 已提交
598 599 600 601 602 603 604
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

605
void TestPrediction(const PaddlePredictor::Config *config,
606
                    const std::vector<std::vector<PaddleTensor>> &inputs,
607 608
                    std::vector<std::vector<PaddleTensor>> *outputs,
                    int num_threads, bool use_analysis = FLAGS_use_analysis) {
609
  PrintConfig(config, use_analysis);
L
luotao1 已提交
610
  if (num_threads == 1) {
T
Tao Luo 已提交
611
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
612
  } else {
T
Tao Luo 已提交
613 614
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
615 616 617
  }
}

618 619 620
void SummarizeAccuracy(float avg_acc_ref, float avg_acc, int compared_idx) {
  std::string data_type_name = "INT8";
  if (FLAGS_enable_bf16) data_type_name = "BF16";
621 622 623 624 625 626 627 628 629 630 631 632 633 634
  PADDLE_ENFORCE_LE(
      compared_idx, 2,
      platform::errors::InvalidArgument(
          "The compared_idx should be <= 2. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
  PADDLE_ENFORCE_GE(
      compared_idx, 1,
      platform::errors::InvalidArgument(
          "The compared_idx should be >= 1. But received compared_idx = %d. "
          "For top1 accuracy, set compared_idx = 1; For top5 accuracy or mean "
          "Average Precision (mAP), set compared_idx = 2.",
          compared_idx));
635
  std::string prefix = (compared_idx == 1) ? "top1_accuracy " : "mAP ";
636
  LOG(INFO) << "--- Accuracy summary --- ";
637 638
  LOG(INFO) << "Accepted " << prefix
            << "drop threshold: " << FLAGS_quantized_accuracy
639 640
            << ". (condition: (FP32_" << prefix << " - " << data_type_name
            << "_" << prefix << ") <= threshold)";
641
  LOG(INFO) << "FP32: avg " << prefix << std::fixed << std::setw(6)
642 643 644
            << std::setprecision(4) << avg_acc_ref;
  LOG(INFO) << data_type_name << ": avg " << prefix << std::fixed
            << std::setw(6) << std::setprecision(4) << avg_acc;
645 646
}

647 648 649 650 651 652 653 654
void SummarizePerformance(const char *title, float sample) {
  CHECK_GT(sample, 0.0);
  auto throughput = 1000.0 / sample;
  LOG(INFO) << title << ": avg fps: " << std::fixed << std::setw(6)
            << std::setprecision(4) << throughput << ", avg latency: " << sample
            << " ms";
}

655 656
void SummarizePerformance(const char *title_fp32, float sample_latency_fp32,
                          const char *title, float sample_latency) {
657 658 659
  if (FLAGS_enable_fp32) SummarizePerformance(title_fp32, sample_latency_fp32);
  if (FLAGS_enable_int8 || FLAGS_enable_bf16)
    SummarizePerformance(title, sample_latency);
660 661
}

662 663
float CompareAccuracyOne(
    const std::vector<std::vector<PaddleTensor>> &output_slots,
664
    int compared_idx) {
665 666 667 668
  PADDLE_ENFORCE_GT(output_slots.size(), 0,
                    platform::errors::InvalidArgument(
                        "The accuracy vector is empty. The accuracy vector "
                        "size should be bigger than 0"));
669

670 671 672 673 674 675 676
  float total_accs{0};

  for (size_t i = 0; i < output_slots.size(); ++i) {
    switch (compared_idx) {
      case 1:
        PADDLE_ENFORCE_GE(
            output_slots[i].size(), 2UL,
677 678 679 680
            platform::errors::InvalidArgument(
                "To achieve top 1 accuracy, output_slots size "
                "must be bigger than or equal to 2, but now the size is %d",
                output_slots[i].size()));
681 682 683
        break;
      case 2:
        PADDLE_ENFORCE_GE(
684 685 686 687 688 689
            output_slots[i].size(), 3UL,
            platform::errors::InvalidArgument(
                "To achieve top 5 accuracy or mean Average "
                "Precision (mAP), output_slots size must be "
                "bigger than or equal to 3, but now the size is %d",
                output_slots[i].size()));
690 691 692 693
        break;
      default:
        throw std::invalid_argument(
            "CompareAccuracy: compared_idx is out of range.");
694 695
    }

696
    if (output_slots[i][compared_idx].lod.size() > 0)
697
      throw std::invalid_argument("CompareAccuracy: output has nonempty LoD.");
698 699

    if (output_slots[i][compared_idx].dtype != paddle::PaddleDType::FLOAT32)
700
      throw std::invalid_argument(
701
          "CompareAccuracy: output is of a wrong type.");
702 703 704

    total_accs +=
        *static_cast<float *>(output_slots[i][compared_idx].data.data());
705
  }
706 707 708 709 710 711 712 713

  return total_accs / output_slots.size();
}

void CompareAccuracy(
    const std::vector<std::vector<PaddleTensor>> &output_slots_quant,
    const std::vector<std::vector<PaddleTensor>> &output_slots_ref,
    int compared_idx) {
714
  if ((FLAGS_enable_fp32 && (FLAGS_enable_int8 || FLAGS_enable_bf16)) &&
715 716 717 718 719 720 721
      (output_slots_quant.size() == 0 || output_slots_ref.size()) == 0)
    throw std::invalid_argument(
        "CompareAccuracy: output_slots vector is empty.");

  float avg_acc_quant = 0.0;
  float avg_acc_ref = 0.0;

722
  if (FLAGS_enable_int8 || FLAGS_enable_bf16)
723 724 725 726
    avg_acc_quant = CompareAccuracyOne(output_slots_quant, compared_idx);

  if (FLAGS_enable_fp32)
    avg_acc_ref = CompareAccuracyOne(output_slots_ref, compared_idx);
727

728
  SummarizeAccuracy(avg_acc_ref, avg_acc_quant, compared_idx);
729 730 731

  if (FLAGS_enable_fp32) CHECK_GT(avg_acc_ref, 0.0);

732
  if (FLAGS_enable_int8 || FLAGS_enable_bf16) CHECK_GT(avg_acc_quant, 0.0);
733

734
  if (FLAGS_enable_fp32 && (FLAGS_enable_int8 || FLAGS_enable_bf16))
735
    CHECK_LE(avg_acc_ref - avg_acc_quant, FLAGS_quantized_accuracy);
736 737
}

L
luotao1 已提交
738 739 740 741 742 743 744 745 746
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
747 748 749 750
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
751 752 753 754 755 756
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
757
void CompareNativeAndAnalysis(
758
    const PaddlePredictor::Config *config,
759
    const std::vector<std::vector<PaddleTensor>> &inputs) {
760
  PrintConfig(config, true);
761
  std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
762
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
763
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
764 765 766 767 768 769 770 771
  PADDLE_ENFORCE_GT(native_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The native outputs is empty. The native outputs "
                        "vector size must be bigger than 0"));
  PADDLE_ENFORCE_GT(analysis_outputs.size(), 0,
                    platform::errors::InvalidArgument(
                        "The analysis outputs is empty. The analysis outputs "
                        "vector size must be bigger than 0"));
772
  CompareResult(analysis_outputs.back(), native_outputs.back());
T
Tao Luo 已提交
773 774
}

775
void CompareQuantizedAndAnalysis(
776
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
777 778
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
779 780 781 782 783 784
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));
785 786 787 788 789 790 791
  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
792
  float sample_latency_fp32{-1};
793 794 795 796 797

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                            &sample_latency_fp32);
  }
798 799 800 801 802

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> quantized_outputs;
803
  float sample_latency_int8{-1};
804

805 806 807 808
  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true,
                            VarType::INT8, &sample_latency_int8);
  }
809 810
  SummarizePerformance("FP32", sample_latency_fp32, "INT8",
                       sample_latency_int8);
811

812
  CompareAccuracy(quantized_outputs, analysis_outputs, compared_idx);
813 814
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
void CompareBFloat16AndAnalysis(
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));
  LOG(INFO) << "FP32 & BF16 prediction run: batch_size " << FLAGS_batch_size;

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                            &sample_latency_fp32);
  }

  LOG(INFO) << "--- BF16 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> bf16_outputs;
  float sample_latency_bf16{-1};

  if (FLAGS_enable_bf16) {
    TestOneThreadPrediction(qcfg, inputs, &bf16_outputs, true, VarType::FP32,
                            &sample_latency_bf16);
  }
  SummarizePerformance("FP32", sample_latency_fp32, "BF16",
                       sample_latency_bf16);

  CompareAccuracy(bf16_outputs, analysis_outputs, compared_idx);
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
void CompareAnalysisAndAnalysis(
    const AnalysisConfig *config1, const AnalysisConfig *config2,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const bool with_accuracy_layer = FLAGS_with_accuracy_layer,
    const int compared_idx = 1) {
  PADDLE_ENFORCE_EQ(
      inputs[0][0].shape[0], FLAGS_batch_size,
      platform::errors::InvalidArgument(
          "Input data has to be packed batch by batch. The batchsize is set to "
          "%d, but the real input is packed with batchsize = %d",
          FLAGS_batch_size, inputs[0][0].shape[0]));

  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg1 = reinterpret_cast<const PaddlePredictor::Config *>(config1);
  PrintConfig(cfg1, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};

  if (FLAGS_enable_fp32) {
    TestOneThreadPrediction(cfg1, inputs, &analysis_outputs, true,
                            VarType::FP32, &sample_latency_fp32);
  }

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *cfg2 = reinterpret_cast<const PaddlePredictor::Config *>(config2);
  PrintConfig(cfg2, true);
  std::vector<std::vector<PaddleTensor>> int8_outputs;
  float sample_latency_int8{-1};

  if (FLAGS_enable_int8) {
    TestOneThreadPrediction(cfg2, inputs, &int8_outputs, true, VarType::INT8,
                            &sample_latency_int8);
  }
890 891
  SummarizePerformance("FP32", sample_latency_fp32, "INT8",
                       sample_latency_int8);
892 893 894 895 896
  if (with_accuracy_layer) {
    CompareAccuracy(int8_outputs, analysis_outputs, compared_idx);
  }
}

N
nhzlx 已提交
897 898 899 900 901 902 903 904 905 906
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

907
void CompareAnalysisAndZeroCopy(
908
    PaddlePredictor::Config *config, PaddlePredictor::Config *config1,
909 910 911 912 913 914 915 916 917
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
918 919
  reinterpret_cast<AnalysisConfig *>(config1)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config1, true);
920 921 922 923 924 925
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
926
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
927 928 929 930 931
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

932 933 934 935 936 937 938
void SaveOptimModel(AnalysisConfig *cfg, const std::string &dstPath) {
  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(cfg),
      FLAGS_use_analysis);
  (static_cast<AnalysisPredictor *>(predictor.get()))->SaveOptimModel(dstPath);
}

L
luotao1 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
1010
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1},
L
luotao1 已提交
1011
                                  [](int a, int b) { return a * b; });
1012
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1},
L
luotao1 已提交
1013 1014 1015 1016 1017 1018 1019
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
1020
    if (a.type() == VarType::FP32) {
L
luotao1 已提交
1021 1022 1023 1024 1025 1026 1027 1028
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
1029
    } else if (a.type() == VarType::INT64) {
L
luotao1 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
1061 1062
}  // namespace inference
}  // namespace paddle