test_model.py 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import os
import numpy as np
import shutil
import tempfile

L
Leo Chen 已提交
25
import paddle
26
from paddle import fluid
27
from paddle import to_tensor
28
from paddle.nn import Conv2d, Pool2D, Linear, ReLU, Sequential, Softmax
29

30 31
from paddle import Model
from paddle.static import InputSpec
32
from paddle.nn.layer.loss import CrossEntropyLoss
33
from paddle.metric import Accuracy
34 35 36 37
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
from paddle.io import DistributedBatchSampler
from paddle.hapi.model import prepare_distributed_context
38 39
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
40 41


42
class LeNetDygraph(paddle.nn.Layer):
L
LielinJiang 已提交
43
    def __init__(self, num_classes=10):
44 45 46
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
47
            Conv2d(
48
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
49
            ReLU(),
50
            Pool2D(2, 'max', 2),
51
            Conv2d(
52
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
53
            ReLU(),
54 55 56 57
            Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = Sequential(
L
LielinJiang 已提交
58
                Linear(400, 120), Linear(120, 84), Linear(84, 10))
59 60 61 62 63 64 65 66 67 68

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


L
LielinJiang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
class LeNetDeclarative(fluid.dygraph.Layer):
    def __init__(self, num_classes=10):
        super(LeNetDeclarative, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
            Conv2d(
                1, 6, 3, stride=1, padding=1),
            ReLU(),
            Pool2D(2, 'max', 2),
            Conv2d(
                6, 16, 5, stride=1, padding=0),
            ReLU(),
            Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = Sequential(
                Linear(400, 120), Linear(120, 84), Linear(84, 10))

    @declarative
    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
    optim = fluid.optimizer.Adam(
        learning_rate=0.001, parameter_list=model.parameters())
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
129
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

            cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] ==
                    labels.numpy()).astype('int').sum()

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
            self.skipTest('module not tested when ONLY_CPU compling')
156
        cls.device = paddle.set_device('gpu')
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
        cls.test_dataset = MnistDataset(
            mode='test', return_label=False, sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(
            cls.train_dataset, places=cls.device, batch_size=64)
        cls.val_loader = fluid.io.DataLoader(
            cls.val_dataset, places=cls.device, batch_size=64)
        cls.test_loader = fluid.io.DataLoader(
            cls.test_dataset, places=cls.device, batch_size=64)

        seed = 333
L
Leo Chen 已提交
173 174
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
175 176 177 178 179 180 181

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

182 183
        cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [InputSpec([None, 1], 'int64', 'label')]
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

        cls.save_dir = tempfile.mkdtemp()
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

201 202 203 204 205 206
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

222
    def fit(self, dynamic, num_replicas=None, rank=None):
223 224
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
L
Leo Chen 已提交
225 226
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
227

L
LielinJiang 已提交
228
        net = LeNet()
229
        optim_new = fluid.optimizer.Adam(
230 231
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=self.inputs, labels=self.labels)
232 233
        model.prepare(
            optim_new,
234
            loss=CrossEntropyLoss(reduction="sum"),
235
            metrics=Accuracy())
236 237 238 239 240 241
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        train_sampler = DistributedBatchSampler(
242 243 244 245 246
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
247
        val_sampler = DistributedBatchSampler(
248 249 250 251 252
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
271 272
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
292 293
        model = Model(LeNet(), self.inputs)
        model.prepare()
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        model.load(self.weight_path)
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

        sampler = DistributedBatchSampler(
            self.test_dataset, batch_size=64, shuffle=False)

        test_loader = fluid.io.DataLoader(
            self.test_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None


316
class MyModel(paddle.nn.Layer):
L
LielinJiang 已提交
317
    def __init__(self):
318
        super(MyModel, self).__init__()
319
        self._fc = Linear(20, 10)
320 321 322 323 324 325 326 327

    def forward(self, x):
        y = self._fc(x)
        return y


class TestModelFunction(unittest.TestCase):
    def set_seed(self, seed=1024):
L
Leo Chen 已提交
328 329
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
330 331 332 333 334 335 336 337 338

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
L
LielinJiang 已提交
339
            m = MyModel()
340 341 342
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
343 344
            output = m(to_tensor(data))
            loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
345 346 347 348 349 350 351 352 353
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
354
            device = paddle.set_device('cpu')
355 356 357
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

L
LielinJiang 已提交
358
            net = MyModel()
359
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
360
                                         parameter_list=net.parameters())
361

362 363
            inputs = [InputSpec([None, dim], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
364
            model = Model(net, inputs, labels)
365
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
366 367 368 369
            loss, = model.train_batch([data], [label])
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

370
    def test_test_batch(self):
371 372 373 374 375 376 377 378
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
379
            output = m(to_tensor(data))
380 381 382 383 384
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
385
            device = paddle.set_device('cpu')
386 387
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
388
            net = MyModel()
389
            inputs = [InputSpec([None, dim], 'float32', 'x')]
390 391
            model = Model(net, inputs)
            model.prepare()
392 393
            out, = model.test_batch([data])

394
            np.testing.assert_allclose(out, ref, rtol=1e-6)
395 396 397 398 399
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
        path = tempfile.mkdtemp()
        for dynamic in [True, False]:
400
            device = paddle.set_device('cpu')
401
            fluid.enable_dygraph(device) if dynamic else None
L
LielinJiang 已提交
402
            net = MyModel()
403 404
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
405
            optim = fluid.optimizer.SGD(learning_rate=0.001,
406 407
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
408
            model.prepare(
409
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
410 411 412 413 414
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            fluid.disable_dygraph() if dynamic else None

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    def test_dynamic_load(self):
        mnist_data = MnistDataset(mode='train')
        for new_optimizer in [True, False]:
            path = tempfile.mkdtemp()
            paddle.disable_static()
            net = LeNet()
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
            if new_optimizer:
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=net.parameters())
            else:
                optim = fluid.optimizer.Adam(
                    learning_rate=0.001, parameter_list=net.parameters())
            model = Model(net, inputs, labels)
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            model.fit(mnist_data, batch_size=64, verbose=0)
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            paddle.enable_static()

438 439
    def test_dynamic_save_static_load(self):
        path = tempfile.mkdtemp()
440
        # dynamic saving
441
        device = paddle.set_device('cpu')
442
        fluid.enable_dygraph(device)
L
LiuChiaChi 已提交
443
        model = Model(MyModel())
444 445
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
446
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
447 448
        model.save(path + '/test')
        fluid.disable_dygraph()
449

450 451
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
L
LielinJiang 已提交
452
        model = Model(MyModel(), inputs, labels)
453 454
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
455
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
456 457 458 459 460 461
        model.load(path + '/test')
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
        path = tempfile.mkdtemp()

L
LielinJiang 已提交
462
        net = MyModel()
463 464
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
465
        optim = fluid.optimizer.SGD(learning_rate=0.001,
466 467
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
468
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
469 470
        model.save(path + '/test')

471
        device = paddle.set_device('cpu')
472 473
        fluid.enable_dygraph(device)  #if dynamic else None

L
LielinJiang 已提交
474
        net = MyModel()
475 476
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
477
        optim = fluid.optimizer.SGD(learning_rate=0.001,
478 479
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
480
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
481 482 483 484 485 486
        model.load(path + '/test')
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
487
            device = paddle.set_device('cpu')
488
            fluid.enable_dygraph(device) if dynamic else None
489
            net = MyModel()
490
            inputs = [InputSpec([None, 20], 'float32', 'x')]
491 492
            model = Model(net, inputs)
            model.prepare()
493 494 495 496 497
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

L
LielinJiang 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
    def test_summary(self):
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

        for dynamic in [True, False]:
            device = paddle.set_device('cpu')
            fluid.enable_dygraph(device) if dynamic else None
            net = MyModel()
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            params_info = model.summary()
            gt_params = _get_param_from_state_dict(net.state_dict())

            np.testing.assert_allclose(params_info['total_params'], gt_params)
            print(params_info)

518 519
            model.summary(input_size=(20))
            model.summary(input_size=[(20)])
L
LielinJiang 已提交
520
            model.summary(input_size=(20), dtype='float32')
521

L
LielinJiang 已提交
522 523
    def test_summary_nlp(self):
        paddle.enable_static()
L
LielinJiang 已提交
524 525 526 527 528 529 530
        nlp_net = paddle.nn.GRU(input_size=2,
                                hidden_size=3,
                                num_layers=3,
                                direction="bidirectional")
        paddle.summary(nlp_net, (1, 1, 2))
        rnn = paddle.nn.LSTM(16, 32, 2)
        paddle.summary(rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])
L
LielinJiang 已提交
531 532 533 534

    def test_summary_error(self):
        with self.assertRaises(TypeError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
535
            paddle.summary(nlp_net, (1, 1, '2'))
L
LielinJiang 已提交
536 537 538 539 540 541 542

        with self.assertRaises(ValueError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
            paddle.summary(nlp_net, (-1, -1))

        paddle.disable_static()
        nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
543
        paddle.summary(nlp_net, (1, 1, 2))
L
LielinJiang 已提交
544

545
    def test_export_deploy_model(self):
546
        for dynamic in [True, False]:
547
            paddle.disable_static() if dynamic else None
548 549
            prog_translator = ProgramTranslator()
            prog_translator.enable(False) if not dynamic else None
550
            net = LeNet()
551
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
552 553 554 555 556 557 558
            model = Model(net, inputs)
            model.prepare()
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            tensor_img = np.array(
                np.random.random((1, 1, 28, 28)), dtype=np.float32)
559

560
            model.save(save_dir, training=False)
561
            ori_results = model.test_batch(tensor_img)
562
            fluid.disable_dygraph() if dynamic else None
563

564 565 566 567 568 569 570 571 572 573 574 575 576 577
            place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
                [inference_program, feed_target_names, fetch_targets] = (
                    fluid.io.load_inference_model(
                        dirname=save_dir, executor=exe))
                results = exe.run(inference_program,
                                  feed={feed_target_names[0]: tensor_img},
                                  fetch_list=fetch_targets)
                np.testing.assert_allclose(
                    results, ori_results, rtol=1e-5, atol=1e-7)
                shutil.rmtree(save_dir)
578
            paddle.enable_static()
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
    def test_export_deploy_model_without_inputs_in_dygraph(self):
        mnist_data = MnistDataset(mode='train')
        paddle.disable_static()
        for initial in ["fit", "train_batch", "eval_batch", "test_batch"]:
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
                net = LeNet()
                model = Model(net)
                model.prepare(
                    optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
                if initial == "fit":
                    model.fit(mnist_data, batch_size=64, verbose=0)
                else:
                    img = np.array(
                        np.random.random((1, 1, 28, 28)), dtype=np.float32)
                    label = np.array(np.random.rand(1, 1), dtype=np.int64)
                    if initial == "train_batch":
L
LiuChiaChi 已提交
598
                        model.train_batch([img], [label])
599
                    elif initial == "eval_batch":
L
LiuChiaChi 已提交
600
                        model.eval_batch([img], [label])
601
                    else:
L
LiuChiaChi 已提交
602
                        model.test_batch([img])
603 604 605 606

                model.save(save_dir, training=False)
                shutil.rmtree(save_dir)

607

608 609
class TestRaiseError(unittest.TestCase):
    def test_input_without_name(self):
L
LielinJiang 已提交
610
        net = MyModel()
611

612 613
        inputs = [InputSpec([None, 10], 'float32')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
614 615 616
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)

617 618 619 620 621 622 623 624 625 626
    def test_export_deploy_model_without_inputs_and_run_in_dygraph(self):
        paddle.disable_static()
        net = MyModel(classifier_activation=None)
        save_dir = tempfile.mkdtemp()
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        with self.assertRaises(RuntimeError):
            model = Model(net)
            model.save(save_dir, training=False)
        paddle.enable_static()
627

628

629 630
if __name__ == '__main__':
    unittest.main()