pull_dense_worker.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <time.h>
W
wanghuancoder 已提交
15

16 17 18 19 20
#include "paddle/fluid/framework/device_worker.h"

namespace paddle {
namespace framework {

W
wanghuancoder 已提交
21 22 23 24
class LoDTensor;
class Scope;
class Variable;

25
std::shared_ptr<PullDenseWorker> PullDenseWorker::s_instance_ = NULL;
D
dongdaxiang 已提交
26 27 28 29 30 31
std::mutex PullDenseWorker::mutex_for_version_;
std::map<uint64_t, uint64_t> PullDenseWorker::last_versions_;
std::map<uint64_t, uint64_t> PullDenseWorker::current_version_;
std::map<uint64_t, std::vector<uint64_t>> PullDenseWorker::training_versions_;
std::map<uint64_t, std::vector<std::string>>
    PullDenseWorker::dense_value_names_;
32 33 34 35

void PullDenseWorker::Initialize(const TrainerDesc& param) {
  running_ = false;
  param_ = param.pull_dense_param();
H
heqiaozhi 已提交
36
  dwp_param_ = param.downpour_param();
37 38 39
  threshold_ = param_.threshold();
  thread_num_ = param_.device_num();
  sleep_time_ms_ = param_.sleep_time_ms();
40 41
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
H
heqiaozhi 已提交
42 43 44 45 46 47 48 49 50
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    TableParameter table;
    for (auto i : param_.dense_table()) {
      if (i.table_id() == tid) {
        table = i;
        break;
      }
    }
51
    // setup dense variables for each table
H
heqiaozhi 已提交
52
    int var_num = table.dense_value_name_size();
53 54
    dense_value_names_[tid].resize(var_num);
    for (int j = 0; j < var_num; ++j) {
55
      dense_value_names_[tid][j] = table.dense_value_name(j);
56 57 58 59 60 61
    }
    // setup training version for each table
    training_versions_[tid].resize(thread_num_, 0);
    last_versions_[tid] = 0;
    current_version_[tid] = 0;
  }
62
  fleet_ptr_ = FleetWrapper::GetInstance();
T
Thunderbrook 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
#ifdef PADDLE_WITH_CUDA
  copy_streams_.clear();
  places_.clear();
  thread_scopes_.clear();
#endif
}

void PullDenseWorker::CreatePinVar() {
#ifdef PADDLE_WITH_CUDA
  // for (auto& v : dense_value_names_) {
  //  for (auto& name : v.second) {
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
      auto& name = dense_value_names_[tid][j];
      Variable* var = root_scope_->FindVar(name);

      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      auto* ptr = root_scope_->Var(name + "pin");
      InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
      LoDTensor* pin_tensor = ptr->GetMutable<LoDTensor>();
      pin_tensor->mutable_data<float>(tensor->dims(),
                                      platform::CUDAPinnedPlace());
    }
  }
#endif
91 92 93 94 95 96 97 98 99 100 101 102
}

void PullDenseWorker::Wait(std::vector<::std::future<int32_t>>* status_vec) {
  for (auto& t : *status_vec) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(WARNING) << "Current Pull Dense Thread Failed Times"
                   << ++pull_dense_fail_times_;
    }
  }

103
  size_t MAX_FAIL_NUM = 20;
104
  if (pull_dense_fail_times_ > MAX_FAIL_NUM) {
105 106
    PADDLE_THROW(platform::errors::Fatal(
        "Pull dense failed more than %d times.", MAX_FAIL_NUM));
107 108
    exit(-1);
  }
109
  status_vec->resize(0);
T
Thunderbrook 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#ifdef PADDLE_WITH_CUDA

  for (size_t i = 0; i < places_.size(); ++i) {
    // for (auto& v : dense_value_names_) {
    //  for (auto& name : v.second) {
    for (int x = 0; x < dwp_param_.program_config(0).pull_dense_table_id_size();
         ++x) {
      uint64_t tid = static_cast<uint64_t>(
          dwp_param_.program_config(0).pull_dense_table_id(x));
      for (size_t j = 0; j < dense_value_names_[tid].size(); j++) {
        auto& name = dense_value_names_[tid][j];

        Variable* pin_var = root_scope_->FindVar(name + "pin");
        LoDTensor* pin_tensor = pin_var->GetMutable<LoDTensor>();
        float* pin_w = pin_tensor->data<float>();
        Variable* var = thread_scopes_[i]->FindVar(name);
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        float* w = tensor->data<float>();
        memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, places_[i]), w,
                     platform::CUDAPinnedPlace(), pin_w,
                     sizeof(float) * tensor->numel(), copy_streams_[i]);
      }
    }
  }
#endif
135 136 137 138 139 140 141 142 143
}

void PullDenseWorker::Stop() {
  if (running_) {
    running_ = false;
    t_.join();
  }
}

144 145
void PullDenseWorker::PullDense(bool force_update) {
  pull_dense_status_.resize(0);
146 147
  for (int i = 0; i < dwp_param_.program_config(0).pull_dense_table_id_size();
       ++i) {
148 149 150
    uint64_t tid = static_cast<uint64_t>(
        dwp_param_.program_config(0).pull_dense_table_id(i));
    if (force_update || CheckUpdateParam(tid)) {
T
Thunderbrook 已提交
151 152
#ifdef PADDLE_WITH_CUDA
      VLOG(3) << "pull dense " << force_update << " " << tid;
153
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, tid, dense_value_names_[tid],
T
Thunderbrook 已提交
154 155 156 157 158
                                     &pull_dense_status_, false);
#else
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, tid, dense_value_names_[tid],
                                     &pull_dense_status_, true);
#endif
159 160 161 162 163 164 165 166
      ResetThreadVersion(tid);
    }
  }
  if (pull_dense_status_.size() != 0) {
    Wait(&pull_dense_status_);
  }
}

167 168
int PullDenseWorker::Start() {
  running_ = true;
169 170
  // before training, we can pull dense from pserver first.
  PullDense(true);
171 172 173 174 175 176
  t_ = std::thread(&PullDenseWorker::Run, this);
  return 0;
}

void PullDenseWorker::Run() {
  while (running_) {
177
    PullDense(false);
D
dongdaxiang 已提交
178
#ifndef _WIN32
179
    usleep(sleep_time_ms_ * 1000);
D
dongdaxiang 已提交
180
#endif
181 182 183 184 185 186 187 188 189 190 191 192 193
  }
}

void PullDenseWorker::IncreaseThreadVersion(int thread_id, uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  training_versions_[table_id][thread_id]++;
}

bool PullDenseWorker::CheckUpdateParam(uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  auto& version = training_versions_[table_id];
  current_version_[table_id] =
      *(std::min_element(version.begin(), version.end()));
194 195
  if (current_version_[table_id] - last_versions_[table_id] <
      static_cast<size_t>(threshold_)) {
196 197 198 199 200 201 202 203 204 205
    return false;
  }
  return true;
}

void PullDenseWorker::ResetThreadVersion(uint64_t table_id) {
  std::lock_guard<std::mutex> lock(mutex_for_version_);
  last_versions_[table_id] = current_version_[table_id];
}

206 207 208 209 210 211 212 213 214 215 216
int PullDenseWorker::GetThreadIdByScope(const Scope* scope) {
  if (scope_to_thread_id_.find(scope) != scope_to_thread_id_.end()) {
    return scope_to_thread_id_[scope];
  }
  return -1;
}

void PullDenseWorker::SetThreadIdByScope(const Scope* scope, int tid) {
  scope_to_thread_id_[scope] = tid;
}

217 218
}  // namespace framework
}  // namespace paddle