crop_op.cc 6.4 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/crop_op.h"
W
wanghaoshuang 已提交
16
#include <boost/lexical_cast.hpp>
W
wanghaoshuang 已提交
17 18 19 20 21

namespace paddle {
namespace operators {

using framework::Tensor;
22
using framework::LoDTensor;
W
wanghaoshuang 已提交
23 24 25 26 27 28 29

class CropOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
30 31
    auto x_dim = ctx.Input<LoDTensor>("X")->dims();
    auto Y = ctx.Input<LoDTensor>("Y");
W
wanghaoshuang 已提交
32 33 34 35
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
                            "Input(X) of CropOp should not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
                            "Output(Out) of CropOp should not be null.");
W
wanghaoshuang 已提交
36
    if (Y == nullptr) {
37
      auto shape = Attr<std::vector<int>>("shape");
W
wanghaoshuang 已提交
38
      PADDLE_ENFORCE_EQ(
39
          int64_t(shape.size()), x_dim.size(),
W
wanghaoshuang 已提交
40
          "Shape size should be equal to dimention size of input tensor.");
W
wanghaoshuang 已提交
41
      std::vector<int64_t> tensor_shape(shape.size());
42
      for (size_t i = 0; i < shape.size(); ++i) {
W
wanghaoshuang 已提交
43 44
        tensor_shape[i] = (int64_t)shape[i];
      }
45
      ctx.Output<LoDTensor>("Out")->Resize(framework::make_ddim(tensor_shape));
W
wanghaoshuang 已提交
46
    } else {
W
wanghaoshuang 已提交
47 48 49
      PADDLE_ENFORCE_EQ(framework::arity(x_dim), framework::arity(Y->dims()),
                        "Tensor rank of both CropOp's "
                        "inputs must be same.");
50
      ctx.Output<LoDTensor>("Out")->Resize(Y->dims());
W
wanghaoshuang 已提交
51 52 53 54 55 56 57 58
    }
  }
};

class CropOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  CropOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
59 60 61 62 63 64 65 66 67
    AddInput("X",
             "The input of pad op. "
             "The input should be a k-D tensor(k > 0 and k < 7)");
    AddInput("Y",
             "The input used as reference for cropping"
             " with the same dimension as X. ");
    AddOutput("Out",
              "The output of crop op "
              "with the same dimension as X.");
W
wanghaoshuang 已提交
68 69
    AddComment(R"DOC(
Crop Operator.
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Crop input into output, as specified by offsets and shape.

There are two ways to set shape: 
1. referenc input: crop input X as shape as reference input.
                    The dimension of reference input should 
                    be as same as input X.
2. shape list: crop input X by shape described by a list<int>.
               The size of shape list should be as same as 
               dimension size of  input X.

The input should be a k-D tensor(k > 0 and k < 7). As an example:

Given:

X = [[0, 1, 2, 0, 0]
       [0, 3, 4, 0, 0]
       [0, 0, 0, 0, 0]]

and 

offsets = [0, 1]

and
 
shape = [2, 2]

then we get 

Out = [[1, 2],
   [3, 4]]

W
wanghaoshuang 已提交
101
)DOC");
102 103 104 105 106 107 108
    AddAttr<std::vector<int>>("offsets",
                              "A list<int> describing offsets to be cropped."
                              "The size of offsets list should be as same as "
                              "dimension size of  input X.");
    AddAttr<std::vector<int>>("shape",
                              "A list<int> describing the shape of output."
                              "The size of shape list should be as same as "
109 110
                              "dimension size of  input X.")
        .SetDefault(std::vector<int>());
W
wanghaoshuang 已提交
111 112 113 114 115 116 117 118 119 120 121 122
  }
};

class CropOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) should not be null");
123 124
    auto x_dims = ctx.Input<LoDTensor>("X")->dims();
    auto *x_grad = ctx.Output<LoDTensor>(framework::GradVarName("X"));
125 126 127
    if (x_grad != nullptr) {
      x_grad->Resize(x_dims);
    }
W
wanghaoshuang 已提交
128 129 130
  }
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
int64_t transIndex(std::vector<int64_t> out_shape, std::vector<int64_t> x_shape,
                   std::vector<std::pair<int, int>> crop_rules, size_t index) {
  int64_t dim_size = out_shape.size();
  std::vector<int64_t> pos(dim_size);

  for (int64_t i = out_shape.size() - 1; i >= 0; --i) {
    pos[i] = (index % out_shape[i]) + crop_rules[i].first;
    index = index / out_shape[i];
  }

  size_t result = pos[0];
  for (size_t i = 1; i < x_shape.size(); ++i) {
    result = result * x_shape[i] + pos[i];
  }
  return result;
}

148 149 150 151
template <typename T>
class CropCPUKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
152 153
    auto *x = context.Input<LoDTensor>("X");
    auto *out = context.Output<LoDTensor>("Out");
154
    auto x_data = x->data<T>();
155
    T *out_data = out->mutable_data<T>(context.GetPlace());
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    auto x_dims = x->dims();
    auto out_dims = out->dims();
    int64_t out_count = framework::product(out_dims);
    std::vector<int64_t> x_shape = framework::vectorize(x_dims);
    std::vector<int64_t> out_shape = framework::vectorize(out_dims);

    auto offsets = context.op().Attr<std::vector<int>>("offsets");
    PADDLE_ENFORCE_EQ(
        x_dims.size(), offsets.size(),
        "Offsets size should be equal to dimension size of input tensor.");

    std::vector<std::pair<int, int>> crop_rules(x_dims.size());
    for (size_t i = 0; i < crop_rules.size(); ++i) {
      crop_rules[i].first = offsets[i];
      crop_rules[i].second = x_dims[i] - out_dims[i] - offsets[i];
    }

    for (int64_t i = 0; i < out_count; ++i) {
      out_data[i] = x_data[transIndex(out_shape, x_shape, crop_rules, i)];
    }
  }
};

W
wanghaoshuang 已提交
179 180 181 182 183
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(crop, ops::CropOp, ops::CropOpMaker, crop_grad, ops::CropOpGrad);
184
REGISTER_OP_CPU_KERNEL(crop, ops::CropCPUKernel<float>);
W
wanghaoshuang 已提交
185 186
REGISTER_OP_CPU_KERNEL(crop_grad,
                       ops::CropGradKernel<paddle::platform::CPUPlace, float>);