gaussian_random_op.cu 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Q
qijun 已提交
15 16
#include <thrust/random.h>
#include <thrust/transform.h>
17
#include <type_traits>
Y
yaoxuefeng 已提交
18
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
21
#include "paddle/fluid/operators/fill_constant_op.h"
22
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
23 24 25 26

namespace paddle {
namespace operators {

27 28 29 30 31 32 33 34 35 36 37 38
namespace details {
template <typename T>
struct RandomDistributionType {
  using Type = T;
};

template <>
struct RandomDistributionType<platform::float16> {
  using Type = float;
};
}  // namespace details

Q
qijun 已提交
39 40 41 42
template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;
Y
yaoxuefeng 已提交
43
  unsigned int offset_ = 0;
Q
qijun 已提交
44 45 46 47

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

Y
yaoxuefeng 已提交
48 49 50
  __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset)
      : mean_(mean), std_(std), seed_(seed), offset_(offset) {}

Q
qijun 已提交
51
  __host__ __device__ T operator()(const unsigned int n) const {
52 53
    using DataType = typename details::RandomDistributionType<T>::Type;

Q
qijun 已提交
54 55
    thrust::minstd_rand rng;
    rng.seed(seed_);
56 57
    thrust::normal_distribution<DataType> dist(static_cast<DataType>(mean_),
                                               static_cast<DataType>(std_));
Y
yaoxuefeng 已提交
58 59
    unsigned int new_n = n + offset_;
    rng.discard(new_n);
60 61
    T out = static_cast<T>(dist(rng));
    return out;
Q
qijun 已提交
62 63 64 65
  }
};

template <typename T>
Y
Yu Yang 已提交
66
class GPUGaussianRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
67 68 69
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
Y
Pass CI  
Yu Yang 已提交
70
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
71
    bool seed_flag = false;
Q
qijun 已提交
72 73 74
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
75
      seed_flag = true;
Q
qijun 已提交
76
    }
Y
Yu Yang 已提交
77 78
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
Q
qijun 已提交
79
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
80
    auto shape = GetShape(context);
81 82 83
    tensor->Resize(shape);
    T* data = tensor->mutable_data<T>(context.GetPlace());

84
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
85 86 87 88 89 90 91

    int device_id =
        BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
92
      int gen_offset = size * seed_offset.second;
Y
yaoxuefeng 已提交
93 94 95 96 97 98 99 100 101
      thrust::transform(
          index_sequence_begin, index_sequence_begin + size,
          thrust::device_ptr<T>(data),
          GaussianGenerator<T>(mean, std, seed_offset.first, gen_offset));
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed));
    }
Q
qijun 已提交
102 103 104
  }
};

105 106 107 108 109 110 111
template <typename T>
class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
112
    bool seed_flag = false;
113 114 115
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
116
      seed_flag = true;
117 118 119 120 121
    }
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
122 123 124 125 126 127 128

    int device_id =
        BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
129
      int gen_offset = size * seed_offset.second;
Y
yaoxuefeng 已提交
130 131 132 133 134 135 136 137 138
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed_offset.first,
                                             seed_offset.second));
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed));
    }
139 140
  }
};
Q
qijun 已提交
141 142
}  // namespace operators
}  // namespace paddle
D
dongzhihong 已提交
143

144 145 146 147
REGISTER_OP_CUDA_KERNEL(
    gaussian_random, paddle::operators::GPUGaussianRandomKernel<float>,
    paddle::operators::GPUGaussianRandomKernel<double>,
    paddle::operators::GPUGaussianRandomKernel<paddle::platform::float16>);
148 149 150
REGISTER_OP_CUDA_KERNEL(
    gaussian_random_batch_size_like,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<float>,
151 152 153
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<double>,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<
        paddle::platform::float16>);