send_op.cc 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

15
#include <future>  // NOLINT
武毅 已提交
16 17
#include <ostream>

18
#include "paddle/fluid/framework/blocking_queue.h"
Y
Yi Wang 已提交
19 20 21
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
Q
can run  
Qiao Longfei 已提交
22
#include "paddle/fluid/operators/distributed/communicator.h"
W
Wu Yi 已提交
23
#include "paddle/fluid/operators/distributed/distributed.h"
Q
Qiao Longfei 已提交
24
#include "paddle/fluid/operators/distributed/parameter_send.h"
25
#include "paddle/fluid/operators/distributed/rpc_common.h"
W
Wu Yi 已提交
26
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
27
#include "paddle/fluid/platform/profiler.h"
武毅 已提交
28 29 30 31 32 33

namespace paddle {
namespace operators {

class SendOp : public framework::OperatorBase {
 public:
G
gongweibao 已提交
34 35 36 37
  SendOp(const std::string& type, const framework::VariableNameMap& inputs,
         const framework::VariableNameMap& outputs,
         const framework::AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
T
typhoonzero 已提交
38

T
typhoonzero 已提交
39 40
  void RunImpl(const framework::Scope& scope,
               const platform::Place& place) const override {
T
typhoonzero 已提交
41
    auto ins = Inputs("X");
G
gongweibao 已提交
42

Q
Qiao Longfei 已提交
43
    auto epmap = Attr<std::vector<std::string>>("epmap");
Q
Qiao Longfei 已提交
44
    auto trainer_id = Attr<int>("trainer_id");
Q
qiaolongfei 已提交
45

Q
Qiao Longfei 已提交
46
    auto send_varnames = Attr<std::vector<std::string>>("send_varnames");
Q
Qiao Longfei 已提交
47
    auto height_sections = Attr<std::vector<int64_t>>("sections");
T
typhoonzero 已提交
48

Q
Qiao Longfei 已提交
49
    if (send_varnames.size() > 0) {
50 51 52 53 54 55
      if (ins.size() > 1) {
        distributed::Communicator::GetInstance()->Send(ins, send_varnames,
                                                       scope);
      } else {
        distributed::Communicator::GetInstance()->Send(ins[0], scope);
      }
Q
Qiao Longfei 已提交
56 57 58 59
    } else {
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      auto& ctx = *pool.Get(place);
T
typhoonzero 已提交
60

Q
Qiao Longfei 已提交
61
      distributed::RPCClient* rpc_client =
Q
Qiao Longfei 已提交
62
          distributed::RPCClient::GetInstance<RPCCLIENT_T>(trainer_id);
Q
Qiao Longfei 已提交
63 64 65 66 67 68 69 70 71 72

      std::vector<distributed::VarHandlePtr> rets;
      for (size_t i = 0; i < ins.size(); i++) {
        if (NeedSend(scope, ins[i])) {
          VLOG(3) << "sending " << ins[i] << " to " << epmap[i];
          rets.push_back(
              rpc_client->AsyncSendVar(epmap[i], ctx, scope, ins[i]));
        } else {
          VLOG(3) << "don't send no-initialied variable: " << ins[i];
        }
73
      }
74 75 76 77
      for (size_t i = 0; i < rets.size(); i++) {
        VLOG(7) << "before sync_send " << ins[i] << "from " << epmap[i];
        PADDLE_ENFORCE_NE(rets[i]->Wait(), 0U, "internal error in RPCClient");
        VLOG(7) << "after sync_send " << ins[i] << "from " << epmap[i];
78
      }
武毅 已提交
79 80 81 82 83 84
    }
  }
};

class SendOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
85
  void Make() {
86
    AddInput("X", "(Tensor, SelectedRows) Input variables to be sent")
T
typhoonzero 已提交
87
        .AsDuplicable();
88 89
    AddOutput("Out", "(Any) Dummy outputs, used for control dependency")
        .AsDuplicable();
武毅 已提交
90
    AddComment(R"DOC(
A
Abhinav Arora 已提交
91
Send operator
武毅 已提交
92

93
This operator will send variables to listen_and_serve op at the parameter server.
武毅 已提交
94
)DOC");
W
Wu Yi 已提交
95
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
T
typhoonzero 已提交
96 97 98
    AddAttr<std::vector<std::string>>("epmap",
                                      "(string vector, default 127.0.0.1:6164)"
                                      "Server endpoints in the order of input "
T
typhoonzero 已提交
99
                                      "variables for mapping")
100
        .SetDefault({"127.0.0.1:6164"});
Q
Qiao Longfei 已提交
101 102 103 104 105
    AddAttr<std::vector<int64_t>>("sections",
                                  "(vector<int>) "
                                  "the length of each output along the "
                                  "specified axis.")
        .SetDefault(std::vector<int64_t>{});
Q
Qiao Longfei 已提交
106 107 108 109 110 111 112 113 114 115
    AddAttr<std::vector<std::string>>(
        "send_varnames",
        "(vector<string>) "
        "the splited output varnames to send to pserver")
        .SetDefault(std::vector<std::string>{});
    AddAttr<int>("num",
                 "(int, default 0)"
                 "Number of sub-tensors. This must evenly divide "
                 "Input.dims()[axis]")
        .SetDefault(0);
武毅 已提交
116 117 118
  }
};

T
typhoonzero 已提交
119 120 121 122 123
class SendOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* ctx) const override {}
};

武毅 已提交
124 125 126 127 128
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
129 130 131 132 133
REGISTER_OPERATOR(
    send, ops::SendOp,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
    ops::SendOpMaker, ops::SendOpShapeInference);