grad_node_info.h 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/eager/eager_tensor.h"
18
#include "paddle/fluid/eager/hooks.h"
19
#include "paddle/phi/api/all.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

namespace egr {
/**
 * GradNodeBase is base class of all grad node, which is what should be used by
 * eager execution, we define most of backward autograd members here, and for
 * each Operator, they should hold their onw forward Inputs as TensorWrapper.
 *
 * The GradNodeBase will be held in autograd_meta, and it is also a member of
 * Edge, which indicates the edge of backward graph.
 *
 * TODO:(yangzhanlue) GradNodeBase will also in charge of get the correct input
 * from GradOpDescMaker to GradNodeBase.
 *
 * NOTE:GradNodeBase has a method named run, this method should be overrided by
 * the
 * specific derived class, it will prepare backward inputs and double backward's
 * depends. Then, it will call C++ API of backward kernel functions to finish
 * backward computation.
 *
 * NOTE:GradNodeBase holds its own inputs and Outputs
 *
 * Edge is defined to descripe depend of backward, an Edge is what linked
 * between two
 * node, it should contain a Node and rank of this Node (this is used to
 * indicate which
 * input of grad this edge belong).
 * */
class Edge;
class AutogradMeta;

/**
 * GradSlotMeta is used to Record Forward Tensor info to backward, since paddle
 * has lots of operators
 * whose backward logic is depends on if it has some specific inputs or outputs.
 * So, we need a meta info
 * to record it's needs.
 * **/
class GradSlotMeta {
 public:
  GradSlotMeta() = default;
60 61 62
  bool IsStopGradient() const { return stop_gradient_; }
  void SetStopGradient(bool stop_gradient = true) {
    stop_gradient_ = stop_gradient;
63 64
  }

65 66 67 68 69 70 71 72 73 74 75 76
  void SetTensorMeta(const phi::DenseTensorMeta& meta) {
    meta_ = std::make_shared<phi::DenseTensorMeta>(meta);
  }
  bool HasTensorMeta() const { return meta_ && meta_.get(); }
  const phi::DenseTensorMeta& GetTensorMeta() const {
    if (!HasTensorMeta()) {
      PADDLE_THROW(paddle::platform::errors::Fatal(
          "meta_ of GradSlotMeta has not been initialized yet."
          "You're expected to check Edge availability with HasTensorMeta()"
          "before calling GetTensorMeta() interface."));
    }
    return *meta_.get();
77 78 79
  }

 private:
80 81
  bool stop_gradient_{false};
  std::shared_ptr<phi::DenseTensorMeta> meta_ = nullptr;
82 83 84 85
};

class GradNodeBase {
 public:
J
Jiabin Yang 已提交
86
  GradNodeBase() { VLOG(6) << "Construct GradNodeBase"; }
87 88
  GradNodeBase(size_t bwd_in_slot_num, size_t bwd_out_slot_num);
  // TODO(jiabin): Should we have other constructor here?
J
Jiabin Yang 已提交
89
  virtual ~GradNodeBase() { VLOG(6) << "Destruct GradNodeBase"; }
90 91 92 93 94 95 96 97 98

  /**
   * operator() designed to contian the real backward execution logic, it should
   * be
   * overrided by derived class defined for each operator. It accepts a vector
   * of
   * Tensor which contains grads input of current operator
   *
   * Note: why we need backward inputs and outputs construct as vector of vector
99
   * of paddle::experimental::Tensor?
100 101 102 103
   * Since all of paddle op composite in form of {"Slot name ", vector<Var>},
   * so, vector of vector
   * is better choice to fit this format.
   * **/
104
  virtual std::vector<std::vector<paddle::experimental::Tensor>> operator()(
105 106
      const std::vector<std::vector<paddle::experimental::Tensor>>& grads,
      bool create_graph = false) = 0;
107

108 109 110
  virtual void ClearTensorWrappers() = 0;

  virtual bool IsTensorWrappersCleared() = 0;
111 112 113 114 115 116 117 118
  /**
   * AddEdges is designed to set input tensors' backward Node as current
   * node's Edges.
   * This method should be call in forward code and for double backward depends
   * computation.
   *
   * This one is called slot by slot
   * **/
119 120
  void AddEdges(std::vector<AutogradMeta*>* metas, size_t slot_id);
  void AddEdges(AutogradMeta* meta, size_t slot_id);
121

122 123 124 125
  // adj_edges were moved inside OutputMeta(), so no available direct access
  // from GradNodeBase.
  // To access Edges, get GradSlotMeta by calling OutputMeta(), then use
  // slot_meta.GetEdge()
126 127 128

  /**
   * Get Input Meta of current Grad node**/
129
  const std::vector<std::vector<GradSlotMeta>>& InputMeta() const;
130 131
  /**
   * Get Output Meta of current Grad node**/
132
  const std::vector<std::vector<GradSlotMeta>>& OutputMeta() const;
133 134 135 136
  /**
   * Set bwd ins and outs info with forward vars
   * **/

137 138 139 140
  void SetGradInMeta(const std::vector<paddle::experimental::Tensor>& fwd_out,
                     size_t slot_rank);
  void SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
                     size_t slot_rank);
141

142 143 144 145
  void SetGradOutMeta(const std::vector<paddle::experimental::Tensor>& fwd_in,
                      size_t slot_rank);
  void SetGradOutMeta(const paddle::experimental::Tensor& fwd_in,
                      size_t slot_rank);
146 147 148 149 150 151 152

  /**
   * Default setters for Grad in/out meta this should be used for same special
   * Node which will not create by user
   * **/
  void SetDefaultGradInOutMeta();
  /**
153
   * Register GradientHook
154
   * **/
155 156 157 158 159 160 161 162 163 164 165 166 167
  int64_t RegisterGradientHook(size_t slot_id, size_t rank,
                               std::shared_ptr<egr::TensorHook>&& hook);

  /**
  * Remove GradientHook
  * **/
  bool RemoveGradientHook(const int64_t& hook_id) {
    auto remove_cnt = gradient_hooks_.erase(hook_id);
    if (remove_cnt == 0) {
      return false;
    }
    return true;
  }
168 169

  /**
170
   * Apply GradientHook
171
   * **/
172
  inline bool GradientHooksRegistered() { return !gradient_hooks_.empty(); }
173

174 175
  std::vector<std::vector<paddle::experimental::Tensor>> ApplyGradientHooks(
      const std::vector<std::vector<paddle::experimental::Tensor>>& tensors);
176

177 178 179 180 181 182 183
  /**
    * Handle Complex - Real Type Promotion
    * **/
  void HandleComplexGradToRealGrad(
      std::vector<std::vector<paddle::experimental::Tensor>>* out_grads);
  bool NeedComplexToRealConversion() { return need_complex_to_real_; }

184 185
  virtual std::string name() { return "GradNodeBase"; }

186 187 188
  /**
       * GetEdges is designed to get all edges of current node**/
  const std::vector<std::vector<Edge>>& GetEdges() const;
189

190 191
 private:
  // TODO(zhanlve): Merge adj_edges_ into GradOutMeta
192 193 194 195 196 197 198
  // Edges recorded the backward related node info, which indicate all edges
  // linked
  // by this Grad Node.
  // Why we need vector<vector<Edge>>: Edges is as same rank as bwd output.
  std::vector<std::vector<Edge>> adj_edges_;

  // bwd_out_meta_ is used to record Grad output info for backward
199
  std::vector<std::vector<GradSlotMeta>> bwd_out_meta_;
200 201

  // bwd_in_meta_ used to record Grad input info for backward
202
  std::vector<std::vector<GradSlotMeta>> bwd_in_meta_;
203 204 205
  // Gradient Hooks
  // Customer may register a list of hooks which will be called in order during
  // backward
206 207 208 209 210
  // Each entry consists one pair of
  // <hook_id, <out_rank, std::shared_ptr<TensorHook>>>
  std::map<int64_t, std::tuple<
                        /* slot id */ size_t, /* rank */ size_t,
                        /* hook */ std::shared_ptr<TensorHook>>>
211
      gradient_hooks_;
212

213 214
  // We handle complex to real conversion only if any complex GradIn is involved
  bool need_complex_to_real_ = false;
215
  int64_t next_hook_id_{0};
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
};

class Edge {
 public:
  // Default constructor for Edges in order to construct it for AutogradMeta
  Edge() : in_slot_id_(0), in_rank_(0), grad_node_(nullptr) {}

  // In real use cases we should create Edge from grad node and input rank which
  // indicate which edge it is.
  // Since we have slot design in operators we will have to locate an edge with
  // slot
  // and rank.
  Edge(const std::shared_ptr<GradNodeBase>& grad_node, size_t in_slot_id,
       size_t in_rank)
      : in_slot_id_(in_slot_id), in_rank_(in_rank), grad_node_(grad_node) {}

  Edge(const std::shared_ptr<GradNodeBase>& grad_node,
       const std::pair</* slot_id */ size_t, /* rank */ size_t>& rank_info)
      : in_slot_id_(rank_info.first),
        in_rank_(rank_info.second),
        grad_node_(grad_node) {}

  GradNodeBase* GetGradNode() const { return grad_node_.get(); }

  std::shared_ptr<GradNodeBase> GetMutableGradNode() const {
    return grad_node_;
  }

  std::pair<size_t, size_t> GetEdgeRankInfo() const {
    return std::make_pair(in_slot_id_, in_rank_);
  }

  void SetEdgeRankInfo(size_t slot_id, size_t in_rank) {
    in_slot_id_ = slot_id;
    in_rank_ = in_rank;
  }

  void SetEdgeRankInfo(
      const std::pair</* slot_id */ size_t, /* rank */ size_t>& edge_rank) {
    in_slot_id_ = edge_rank.first;
    in_rank_ = edge_rank.second;
  }

  // Currently we use grad_node_ to identify if a edge is initialized.
J
Jiabin Yang 已提交
260 261 262 263 264 265 266 267 268 269 270
  bool IsInitialized() const {
    if (!grad_node_) {
      return false;
    } else {
      if (!(grad_node_.get())) {
        return false;
      } else {
        return true;
      }
    }
  }
271 272 273 274

 private:
  size_t in_slot_id_;
  size_t in_rank_;
J
Jiabin Yang 已提交
275
  std::shared_ptr<GradNodeBase> grad_node_{nullptr};
276 277 278
};

}  // namespace egr