lod_tensor.cc 10.4 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#include "paddle/framework/lod_tensor.h"
武毅 已提交
16 17
#include "paddle/framework/data_type.h"
#include "paddle/framework/framework.pb.h"
18 19 20 21 22 23 24 25

#include "paddle/memory/memcpy.h"
#include "paddle/memory/memory.h"

#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>
26 27 28 29 30 31

#include <glog/logging.h>

namespace paddle {
namespace framework {

武毅 已提交
32
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
33
  os << "{";
武毅 已提交
34
  for (auto &v : lod) {
35
    os << "{";
武毅 已提交
36
    for (auto &i : v) {
37 38 39 40 41 42 43 44 45
      os << i << ",";
    }
    os << "}";
  }
  os << "}";

  return os;
}

Y
Yang Yang 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
  PADDLE_ENFORCE(platform::is_cpu_place(t.place()));
  PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code());

  os << "dim: " << t.dims() << "\n";
  os << "lod: " << t.lod() << "\n";

  // only print first ten elements
  int64_t size = t.numel() < 10 ? t.numel() : 10;
  for (int64_t i = 0; i < size; ++i) {
    os << t.data<float>()[i] << " ";
  }

  return os;
}

武毅 已提交
62
LoD SliceLevels(const LoD &in, size_t level_begin, size_t level_end) {
63
  LoD new_lod;
64 65
  new_lod.reserve(level_end - level_begin);
  for (size_t i = level_begin; i < level_end; i++) {
Q
qijun 已提交
66
    new_lod.emplace_back(in.at(i));
67
  }
68 69 70
  // transform the lowest level to absolute offset.
  LoD abs_offset_lod = ToAbsOffset(in);
  new_lod.back() = abs_offset_lod[level_end - 1];
71
  return new_lod;
72 73
}

武毅 已提交
74
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
Q
qijun 已提交
75
                 size_t elem_end) {
76 77 78 79 80 81 82 83 84
  PADDLE_ENFORCE_LT(level, in.size());
  PADDLE_ENFORCE_LT(elem_end, in[level].size());

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
武毅 已提交
85 86 87
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
88 89
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
90
  }
91 92 93 94
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
武毅 已提交
95
    for (auto &ele : res[lvl]) {
96 97 98 99 100 101
      ele -= front;
    }
  }
  return res;
}

武毅 已提交
102
LoD ToAbsOffset(const LoD &in) {
103 104 105 106
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
  for (int level = result.size() - 2; level >= 0; level--) {
武毅 已提交
107
    for (auto &ele : result[level]) {
108 109 110 111
      ele = result[level + 1][ele];
    }
  }
  return result;
112 113
}

武毅 已提交
114
bool operator==(const LoD &a, const LoD &b) {
115 116 117 118 119
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
武毅 已提交
120 121
    const auto &a_level = a[i];
    const auto &b_level = b[i];
122 123 124 125 126 127 128 129 130 131
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
132 133
}

134 135 136
size_t LoDTensor::NumElements(size_t level, size_t idx) const {
  PADDLE_ENFORCE_LT(level, NumLevels());
  PADDLE_ENFORCE_LT(idx, NumElements(level));
137
  return lod_[level][idx + 1] - lod_[level][idx];
138 139
}

140 141 142 143 144 145 146 147 148
size_t LoDTensor::NumInstancesInElement(size_t level, size_t idx) const {
  PADDLE_ENFORCE_LT(level, NumLevels());
  PADDLE_ENFORCE_LT(idx, NumElements(level));
  auto abs_lod = ToAbsOffset(lod());
  size_t begin = abs_lod[level][idx];
  size_t end = abs_lod[level][idx + 1];
  return end - begin;
}

149
void LoDTensor::ShrinkLevels(size_t level_begin, size_t level_end) {
Q
qijun 已提交
150 151 152 153
  auto new_lod = framework::SliceLevels(lod_, level_begin, level_end);
  lod_ = new_lod;
}

154 155 156 157 158
void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin,
                              size_t elem_end) {
  PADDLE_ENFORCE_LT(level, NumLevels());
  PADDLE_ENFORCE_LT(elem_begin, NumElements(level));
  PADDLE_ENFORCE_LT(elem_end, NumElements(level) + 1);
Q
qijun 已提交
159

160
  auto abs_lod = framework::ToAbsOffset(lod());
Q
qijun 已提交
161 162
  auto new_lod = framework::SliceInLevel(lod_, level, elem_begin, elem_end);
  lod_ = new_lod;
163 164 165 166 167 168

  // slice the underlying tensor
  size_t begin = abs_lod[level][elem_begin];
  size_t end = abs_lod[level][elem_end];
  PADDLE_ENFORCE_LT(begin, end, "Cannot shrink, the result tensor is empty.");
  ShareDataWith(Slice(begin, end));
Q
qijun 已提交
169
}
170

171
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
武毅 已提交
172
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
173 174 175 176 177 178
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
    PADDLE_ENFORCE_LE(start_idx, end_idx);
    PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
179 180 181 182
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
183
    sub_lod.emplace_back(level_lens);
184 185 186
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }
187 188

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
189 190
}

武毅 已提交
191
void AppendLoD(LoD *lod, const LoD &lod_length) {
192 193
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
194
      "The lod_length should has the same size with the appended lod.");
195
  if (lod->empty()) {
Y
Yang Yu 已提交
196 197 198
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
199 200
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
201
  for (size_t i = 0; i < lod->size(); ++i) {
武毅 已提交
202
    auto &level = (*lod)[i];
203 204 205 206 207 208
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

武毅 已提交
209 210
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
211
  {  // the 1st field, uint32_t version for LoDTensor
武毅 已提交
212 213 214
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char *>(&version), sizeof(version));
  }
215 216 217 218 219 220
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
武毅 已提交
221 222 223 224 225 226 227 228 229 230 231
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
232 233
  // the 3st field, Tensor
  SerializeToStream(os, static_cast<Tensor>(tensor), dev_ctx);
武毅 已提交
234 235
}

Y
Yancey 已提交
236 237
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
238
  {
Y
Yancey 已提交
239
    // the 1st field, unit32_t version for LoDTensor
240 241 242
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
武毅 已提交
243
  }
244 245
  {
    // the 2st field, LoD information
武毅 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
259
  // the 3st filed, Tensor
Y
Yancey 已提交
260
  DeserializeFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
武毅 已提交
261 262
}

Y
Yang Yang 已提交
263 264 265 266 267 268 269 270 271 272
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
  check_memory_size();
  //  PADDLE_ENFORCE(lod().empty() || (lod().size() == 1 && lod()[0].empty())
  //                 , "Disable parallel lod for now");
  PADDLE_ENFORCE(lod().empty(), "Disable parallel lod for now");
  PADDLE_ENFORCE(dims()[0] % places.size() == 0,
                 "Batch size should be divided by places size");

  std::vector<LoDTensor> lods;
Y
Yang Yu 已提交
273 274 275 276
  for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) {
    size_t begin = place_idx * dims()[0] / places.size();
    size_t end = (place_idx + 1) * dims()[0] / places.size();
    auto src = Slice(static_cast<int>(begin), static_cast<int>(end));
Y
Yang Yang 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

    LoDTensor dst;
    dst.Resize(src.dims());
    auto &dst_place = places[place_idx];
    auto dst_ptr = dst.mutable_data(dst_place, src.type());

    // TODO(tonyyang-svail):
    //   change the following to framework::CopyFrom
    auto src_place = src.place();
    auto src_ptr = src.data<void>();
    auto size = src.numel() * SizeOfType(src.type());
    if (platform::is_cpu_place(src_place) &&
        platform::is_cpu_place(dst_place)) {
      memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
                   boost::get<platform::CPUPlace>(src_place), src_ptr, size);
    } else {
      PADDLE_THROW("Not Implemented");
    }

    lods.emplace_back(dst);
  }

  return lods;
}

Y
Yang Yang 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
void LoDTensor::MergeLoDTensor(
    const std::vector<const LoDTensor *> &lod_tensors, platform::Place place) {
  PADDLE_ENFORCE(platform::is_cpu_place(place));
  PADDLE_ENFORCE(!lod_tensors.empty());

  framework::DDim new_dim = lod_tensors[0]->dims();
  std::type_index new_type = lod_tensors[0]->type();
  for (auto *lod : lod_tensors) {
    PADDLE_ENFORCE(new_dim == lod->dims());
    PADDLE_ENFORCE(new_type == lod->type());
    PADDLE_ENFORCE(platform::is_cpu_place(lod->place()));
  }
  new_dim[0] *= lod_tensors.size();
  Resize(new_dim);

  auto *dst_ptr = reinterpret_cast<uint8_t *>(mutable_data(place, new_type));
  for (auto *src : lod_tensors) {
    auto size = src->numel() * SizeOfType(src->type());
    memory::Copy(boost::get<platform::CPUPlace>(place), dst_ptr,
                 boost::get<platform::CPUPlace>(src->place()),
                 src->data<void>(), size);
    dst_ptr += size;
  }
}

327 328
}  // namespace framework
}  // namespace paddle