recurrent_network_op_test.cc 13.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
/*
  Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at
  http://www.apache.org/licenses/LICENSE-2.0
  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License.
*/

#include <glog/logging.h>
#include <gtest/gtest.h>

#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/recurrent_network_op.h"

namespace paddle {
namespace operators {

class RecurrentOpTest : public ::testing::Test {
protected:
  virtual void SetUp() override {
    CreateGlobalVariables();
    CreateStepNet();
    CreateRNNOp();
  }

  virtual void TearDown() override {}

  void CreateGlobalVariables() {
    scope_ = std::make_shared<Scope>();
    // create input, and init content
    LOG(INFO) << "create global variable x";
    for (auto inlink : std::vector<std::string>{"x", "x0", "x1", "h"}) {
      Variable* x = scope_->CreateVariable(inlink);
      DDim dims = make_ddim(std::vector<int>{
          10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
      x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    }
    // create output alias just for test
    for (auto inlink : std::vector<std::string>{"h@alias"}) {
      Variable* x = scope_->CreateVariable(inlink);
      DDim dims =
          make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/});
      x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    }

    LOG(INFO) << "create global variable w";
    Variable* w = scope_->CreateVariable("rnn/w");
    w->GetMutable<Tensor>()->mutable_data<float>(
        make_ddim(std::vector<int>{30, 30}), platform::CPUPlace());

59
    for (auto boot : std::vector<std::string>{"h_boot"}) {
Y
Yan Chunwei 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
      LOG(INFO) << "create global variable " << boot;
      Variable* h_boot = scope_->CreateVariable(boot);
      h_boot->GetMutable<Tensor>()->mutable_data<float>(
          make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/}),
          platform::CPUPlace());
    }

    LOG(INFO) << "create variable step_scopes";
    scope_->CreateVariable("step_scopes");

    LOG(INFO) << "create variable h";
    scope_->CreateVariable("h");
  }

  void CreateRNNOp() {
    OpDesc op_desc;

    op_desc.set_type("recurrent_op");
    // inlinks 0
    op_desc.add_inputs("x");
    op_desc.add_inputs("x0");
    op_desc.add_inputs("x1");
    // boot_memories 3
    op_desc.add_inputs("h_boot");
    // step net 5
    op_desc.add_inputs("step_net");
    // outlinks 6
    op_desc.add_outputs("h");
    // step scopes 7
    op_desc.add_outputs("step_scopes");

    auto _input_format = std::vector<int>{
        0,  // in_link
        3,  // memories
94
        4   // step_net
Y
Yan Chunwei 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    };
    auto input_format = op_desc.add_attrs();
    input_format->set_name("input_format");
    input_format->set_type(paddle::framework::AttrType::INTS);
    for (auto i : _input_format) {
      input_format->add_ints(i);
    }

    auto output_format = op_desc.add_attrs();
    output_format->set_name("output_format");
    output_format->set_type(paddle::framework::AttrType::INTS);
    for (auto i : std::vector<int>{0, 1, 2}) {
      output_format->add_ints(i);
    }

    auto inlink_alias = op_desc.add_attrs();
    inlink_alias->set_name("inlink_alias");
    inlink_alias->set_type(paddle::framework::AttrType::STRINGS);

    auto outlink_alias = op_desc.add_attrs();
    outlink_alias->set_name("outlink_alias");
    outlink_alias->set_type(paddle::framework::AttrType::STRINGS);

    auto pre_memories = op_desc.add_attrs();
    pre_memories->set_name("pre_memories");
    pre_memories->set_type(paddle::framework::AttrType::STRINGS);

    auto memories = op_desc.add_attrs();
    memories->set_name("memories");
    memories->set_type(paddle::framework::AttrType::STRINGS);

    // create inlink_alias
    for (const auto& item :
         std::vector<std::string>{"x@alias", "x0@alias", "x1@alias"}) {
      inlink_alias->add_strings(item);
    }
    // pre memories
132
    for (const auto& item : std::vector<std::string>{"rnn/h@pre"}) {
Y
Yan Chunwei 已提交
133 134 135
      pre_memories->add_strings(item);
    }
    // memories
136
    for (const auto& item : std::vector<std::string>{"rnn/h"}) {
Y
Yan Chunwei 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
      memories->add_strings(item);
    }
    // output alias
    for (const auto& item : std::vector<std::string>{"h@alias"}) {
      outlink_alias->add_strings(item);
    }

    rnn_op_ = OpRegistry::CreateOp(op_desc);

    LOG(INFO) << "rnn_op finish init";
  }

  void CreateStepNet() {
    LOG(INFO) << "create variable step_net";
    Variable* var = scope_->CreateVariable("step_net");
    auto net = var->GetMutable<NetOp>();
    net->AddOp(
        OpRegistry::CreateOp("mul", {"rnn/h@pre", "rnn/w"}, {"rnn/s"}, {}));

    net->AddOp(
157
        OpRegistry::CreateOp("add_two", {"x@alias", "rnn/s"}, {"rnn/h"}, {}));
Y
Yan Chunwei 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    net->CompleteAddOp();
  }

  // father scope
  std::shared_ptr<Scope> scope_;
  std::shared_ptr<OperatorBase> rnn_op_;
};

TEST_F(RecurrentOpTest, Run) {
  platform::CPUDeviceContext ctx;
  rnn_op_->InferShape(scope_);
  rnn_op_->Run(scope_, ctx);
}

class RecurrentGradientAlgorithmTest : public ::testing::Test {
protected:
  virtual void SetUp() override {
    CreateGlobalVariables();
    CreateStepScopes();
    CreateStepNet();
    CreateRNNGradientAlgorithm();

    // segment inputs
    SegmentInputs();
    // link forward memories
    LinkeMemories();
  }

  virtual void TearDown() override {}

  void CreateGlobalVariables() {
    scope_ = std::make_shared<Scope>();
    // inputs: x
    LOG(INFO) << "create global variable x";
    Variable* x = scope_->CreateVariable("x");
    DDim dims =
        make_ddim({10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
    x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
    // inputs: h_boot
    LOG(INFO) << "create global variable h_boot";
    Variable* h_boot = scope_->CreateVariable("h_boot");
    h_boot->GetMutable<Tensor>()->mutable_data<float>(
        make_ddim({20 /*batch size*/, 30 /*input dim*/}), platform::CPUPlace());
    // inputs: w
    LOG(INFO) << "create global variable w";
    Variable* w = scope_->CreateVariable("rnn/w");
    w->GetMutable<Tensor>()->mutable_data<float>(make_ddim({30, 30}),
                                                 platform::CPUPlace());
    // inputs: h_grad
    LOG(INFO) << "create variable h_grad";
    Variable* dh = scope_->CreateVariable("h_grad");
    dh->GetMutable<Tensor>()->mutable_data<float>(make_ddim({10, 20, 30}),
                                                  platform::CPUPlace());
    // inputs: step_scopes
    LOG(INFO) << "create variable step_scopes";
    scope_->CreateVariable("step_scopes");
    // inputs: step_net
    LOG(INFO) << "create variable step_net";
    scope_->CreateVariable("step_net");
    // outputs: w_grad
    LOG(INFO) << "create global variable w_grad";
    scope_->CreateVariable("rnn/w_grad");
    // outputs: x_grad
    LOG(INFO) << "create global variable x_grad";
    scope_->CreateVariable("x_grad");
    // outputs: h_boot_grad
    LOG(INFO) << "create global variable h_boot_grad";
    scope_->CreateVariable("h_boot_grad");
  }

  void CreateStepScopes() {
    std::vector<std::shared_ptr<Scope>>* step_scopes =
        scope_->GetVariable("step_scopes")
            ->GetMutable<std::vector<std::shared_ptr<Scope>>>();
    for (int i = 0; i < 10; ++i) {
      auto scope = std::make_shared<Scope>(scope_);
      auto pre_t = scope->CreateVariable("rnn/pre_h")->GetMutable<Tensor>();
      pre_t->mutable_data<float>(make_ddim({20, 30}), platform::CPUPlace());
      auto tensor = scope->CreateVariable("rnn/h")->GetMutable<Tensor>();
      tensor->mutable_data<float>(make_ddim({20, 30}), platform::CPUPlace());

      // for unit test of ConcatOutputs
      auto xg = scope->CreateVariable("rnn/x_grad")->GetMutable<Tensor>();
      xg->mutable_data<float>(make_ddim({20, 30}), platform::CPUPlace());

      step_scopes->push_back(scope);
    }

    // last time step
    auto g = (*step_scopes)[9]
                 ->CreateVariable("rnn/h_pre_grad")
                 ->GetMutable<Tensor>();
    g->mutable_data<float>(make_ddim({20, 30}), platform::CPUPlace());
  }

  void CreateRNNGradientAlgorithm() {
    std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
    arg->step_net = "step_net";
    arg->step_scopes = "step_scopes";
    rnn::Link inlink;
    inlink.external = "h_grad";
    inlink.internal = "rnn/h_grad";
    arg->inlinks = std::vector<rnn::Link>{inlink};

    rnn::Link outlink;
    outlink.external = "x_grad";
    outlink.internal = "rnn/x_grad";
    arg->outlinks = std::vector<rnn::Link>{outlink};

    rnn::MemoryAttr mem_attr;
    mem_attr.pre_var = "rnn/h_pre_grad";
    mem_attr.var = "rnn/h_grad";
    mem_attr.boot_var = "h_boot_grad";
    arg->memories = std::vector<rnn::MemoryAttr>{mem_attr};

    rnn_grad_algo_.Init(std::move(arg));
  }

  void CreateStepNet() {
    LOG(INFO) << "create variable step_net";
    Variable* var = scope_->CreateVariable("step_net");
    auto net = var->GetMutable<NetOp>();
    net->AddOp(OpRegistry::CreateOp("mul",
                                    {"rnn/h_pre", "rnn/w", "rnn/s_grad"},
                                    {"rnn/h_pre_grad", "rnn/w_grad"},
                                    {}));

    net->AddOp(OpRegistry::CreateOp(
        "add_two", {"rnn/h_grad"}, {"rnn/x_grad", "rnn/s_grad"}, {}));
    net->CompleteAddOp();
  }

  void SegmentInputs() {
    LOG(INFO) << "segment inputs";
    std::vector<std::string> inlinks = {"x"};
    std::vector<std::string> inlinks_alias = {"rnn/x"};

    rnn::Link inlink;
    inlink.external = "x";
    inlink.internal = "rnn/x";
    std::vector<std::shared_ptr<Scope>>* step_scopes =
        scope_->GetVariable("step_scopes")
            ->GetMutable<std::vector<std::shared_ptr<Scope>>>();
D
dangqingqing 已提交
301 302 303 304
    rnn::SegmentInputs(*step_scopes,
                       std::vector<rnn::Link>{inlink},
                       10,
                       true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318
  }

  void LinkeMemories() {
    LOG(INFO) << "link memories";
    rnn::MemoryAttr mem_attr;
    mem_attr.pre_var = "rnn/h_pre";
    mem_attr.var = "rnn/h";
    mem_attr.boot_var = "boot_h";
    std::vector<rnn::MemoryAttr> memories;
    memories.push_back(mem_attr);
    std::vector<std::shared_ptr<Scope>>* step_scopes =
        scope_->GetVariable("step_scopes")
            ->GetMutable<std::vector<std::shared_ptr<Scope>>>();
    for (int i = 1; i < 10; ++i) {
D
dangqingqing 已提交
319 320
      rnn::LinkMemories(
          *step_scopes, memories, i, -1, true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    }
  }

  std::shared_ptr<Scope> scope_;
  RecurrentGradientAlgorithm rnn_grad_algo_;
};

// TEST_F(RecurrentGradientAlgorithmTest, Run) {
//   platform::CPUDeviceContext ctx;
//   rnn_grad_algo_.Run(scope_, ctx);
// }

}  // namespace operators
}  // namespace paddle

TEST(RecurrentOp, LinkMemories) {
  using namespace paddle::framework;
  using namespace paddle::platform;
  using namespace paddle::operators;

  // create and init step scopes
  int len = 10;
  std::vector<std::shared_ptr<Scope>> step_scopes;
  for (int i = 0; i < len; ++i) {
    auto scope = std::make_shared<Scope>();
    scope->CreateVariable("pre_h");
    auto tensor = scope->CreateVariable("h")->GetMutable<Tensor>();
    float* data = tensor->mutable_data<float>(make_ddim({15, 20}), CPUPlace());
349
    for (int j = 0; j < 15 * 20; ++j) {
D
dangqingqing 已提交
350
      data[j] = rand() * (1. / (double)RAND_MAX);
Y
Yan Chunwei 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363
    }
    step_scopes.push_back(scope);
  }

  // create MemoryAttr
  rnn::MemoryAttr mem_attr;
  mem_attr.pre_var = "pre_h";
  mem_attr.var = "h";
  mem_attr.boot_var = "boot_h";
  std::vector<rnn::MemoryAttr> memories;
  memories.push_back(mem_attr);

  for (int i = 1; i < len; ++i) {
D
dangqingqing 已提交
364
    rnn::LinkMemories(step_scopes, memories, i, -1, false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
365 366 367 368 369 370 371 372 373
  }
  // check
  for (int i = 0; i < len - 1; ++i) {
    const float* a =
        step_scopes[i]->GetVariable("h")->GetMutable<Tensor>()->data<float>();
    const float* b = step_scopes[i + 1]
                         ->GetVariable("pre_h")
                         ->GetMutable<Tensor>()
                         ->data<float>();
374 375
    for (size_t j = 0; j < 15 * 20; ++j) {
      ASSERT_FLOAT_EQ(a[j], b[j]);
Y
Yan Chunwei 已提交
376 377 378 379
    }
  }

  for (int i = len - 2; i >= 0; --i) {
D
dangqingqing 已提交
380
    rnn::LinkMemories(step_scopes, memories, i, 1, false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
381 382 383 384 385 386 387 388 389 390 391
  }
  // check
  for (int i = len - 2; i >= 0; --i) {
    const float* a = step_scopes[i]
                         ->GetVariable("pre_h")
                         ->GetMutable<Tensor>()
                         ->data<float>();
    const float* b = step_scopes[i + 1]
                         ->GetVariable("h")
                         ->GetMutable<Tensor>()
                         ->data<float>();
392 393
    for (size_t j = 0; j < 15 * 20; ++j) {
      ASSERT_FLOAT_EQ(a[j], b[j]);
Y
Yan Chunwei 已提交
394 395 396 397 398 399
    }
  }
}

USE_OP(add_two);
USE_OP(mul);