margin_cross_entropy_op.cu 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_HIP
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#else
#include <cub/cub.cuh>
#endif

#include <vector>
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/margin_cross_entropy_op.h"
#include "paddle/fluid/operators/math/softmax_impl.h"
26
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
27 28
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
#include "paddle/fluid/string/string_helper.h"
29
#include "paddle/phi/kernels/funcs/axis_utils.h"
30
#include "paddle/phi/kernels/funcs/math_function.h"
31 32 33

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/collective_helper.h"
34
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
#endif

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

void GetClassInterval(const gpuStream_t& stream, const platform::Place& place,
                      const platform::DeviceContext& ctx, const int rid,
                      const int rank, const int nranks, const int D,
                      Tensor* class_interval) {
  std::vector<int> shard_dim_vec(nranks + 1, 0);
  shard_dim_vec[rank + 1] = D;
  if (nranks <= 1) {
    framework::TensorFromVector(shard_dim_vec, ctx, class_interval);
    return;
  }

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  Tensor num_classes_per_device;
  framework::TensorFromVector(shard_dim_vec, ctx, &num_classes_per_device);
  int* num_classes_per_device_ptr = num_classes_per_device.data<int>();

  const auto& comm = platform::NCCLCommContext::Instance().Get(rid, place);
  // use global calculate stream
  const auto calcu_stream =
      static_cast<platform::CUDADeviceContext*>(
          platform::DeviceContextPool::Instance().Get(place))
          ->stream();

73
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
74 75
      num_classes_per_device_ptr, num_classes_per_device_ptr,
      num_classes_per_device.numel(),
76 77 78
      platform::ToNCCLDataType(
          framework::TransToProtoVarType(num_classes_per_device.dtype())),
      ncclSum, comm->comm(), calcu_stream));
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

  auto class_interval_ptr =
      class_interval->mutable_data<int>({nranks + 1}, place);
  size_t cub_temp_storage_bytes = 0;
  cub::DeviceScan::InclusiveSum<int*, int*>(
      nullptr, cub_temp_storage_bytes, nullptr, nullptr, nranks + 1, stream);
  auto cub_temp_storage = memory::Alloc(place, cub_temp_storage_bytes);
  cub::DeviceScan::InclusiveSum<int*, int*>(
      cub_temp_storage->ptr(), cub_temp_storage_bytes,
      num_classes_per_device_ptr, class_interval_ptr, nranks + 1, stream);
  return;
#endif
}

template <typename T, typename IndexT>
__global__ void AddMarginToPositiveLogitsKernel(
    T* logit, const IndexT* label, const float margin1, const float margin2,
    const float margin3, const int rank, const int nranks, const int64_t N,
    const int64_t D, const int* class_interval_ptr) {
  using MPType = typename details::MPTypeTrait<T>::Type;
  int start_index = class_interval_ptr[rank];
  int end_index = class_interval_ptr[rank + 1];
  int num_classes = class_interval_ptr[nranks];
  CUDA_KERNEL_LOOP(i, N) {
    auto real_label = label[i];
    PADDLE_ENFORCE((real_label < num_classes) && (real_label >= 0),
                   "The index is out of bounds, "
                   "please check whether the value of label and "
                   "input meet the number of class. It should "
                   "be less than [%d], but received [%d]",
                   num_classes, real_label);

    if (real_label >= start_index && real_label < end_index) {
      int64_t offset = i * D + real_label - start_index;
      if (fabs(margin1 - 1.0) > 1e-8 || fabs(margin2) > 1e-8) {
        MPType x = static_cast<MPType>(logit[offset]);
        MPType theta = acos(x);
        if (fabs(margin1 - 1.0) > 1e-8) {
          theta *= static_cast<MPType>(margin1);
        }
        if (fabs(margin2) > 1e-8) {
          theta += static_cast<MPType>(margin2);
        }
        logit[offset] = static_cast<T>(cos(theta));
      }
      if (fabs(margin3) > 1e-8) {
        MPType y = static_cast<MPType>(logit[offset]);
        y -= static_cast<MPType>(margin3);
        logit[offset] = static_cast<T>(y);
      }
    }
  }
}

template <typename T>
__global__ void ScaleLogitKernel(T* logits, const float scale, const int64_t N,
                                 const int64_t D) {
  CUDA_KERNEL_LOOP(i, N * D) { logits[i] *= static_cast<T>(scale); }
}

template <typename T>
__global__ void LogitsMinusMaxKernel(T* logits, const T* logits_max_per_row,
                                     const int64_t N, const int64_t D) {
  CUDA_KERNEL_LOOP(i, N * D) {
    auto row = i / D;
    logits[i] -= logits_max_per_row[row];
  }
}

template <typename T>
__global__ void LogitsMinusLogSumKernel(T* logits, const T* logits_sum_per_row,
                                        const int64_t N, const int64_t D) {
  CUDA_KERNEL_LOOP(i, N * D) {
    auto row = i / D;
153
    logits[i] -= kps::details::Log(logits_sum_per_row[row]);
154 155 156 157 158 159 160 161 162 163 164 165 166 167
  }
}

template <typename T, typename IndexT>
__global__ void HardLabelSoftmaxWithCrossEntropyKernel(
    T* loss, T* log_softmax, const IndexT* labels, const int rank,
    const int64_t N, const int64_t D, const int* class_interval_ptr) {
  int start_index = class_interval_ptr[rank];
  CUDA_KERNEL_LOOP(i, N * D) {
    auto row = i / D;
    auto col = i % D;
    if ((col + start_index) == labels[row]) {
      auto softmax = log_softmax[i];
      loss[row] = -softmax;
168
      log_softmax[i] = kps::details::Exp(softmax);
169
    } else {
170
      log_softmax[i] = kps::details::Exp(log_softmax[i]);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    }
  }
}

template <typename T, typename IndexT>
__global__ void CalculateGrad(T* logits_grad, const T* loss_grad,
                              const T* logits, const IndexT* labels,
                              const float margin1, const float margin2,
                              const float scale, const int rank,
                              const int64_t N, const int64_t D,
                              const int* class_interval_ptr) {
  using MPType = typename details::MPTypeTrait<T>::Type;
  int start_index = class_interval_ptr[rank];
  CUDA_KERNEL_LOOP(i, N * D) {
    auto row = i / D;
    auto col = i % D;
    if ((col + start_index) == labels[row]) {
      logits_grad[i] = (logits_grad[i] - static_cast<T>(1.0)) * loss_grad[row];
      if (fabs(margin1 - 1.0) > 1e-8 || fabs(margin2) > 1e-8) {
        MPType dout = static_cast<MPType>(logits_grad[i]);
        MPType one = static_cast<MPType>(1.0f);
        MPType x = static_cast<MPType>(logits[i]);
        MPType m1 = static_cast<MPType>(margin1);
        MPType m2 = static_cast<MPType>(margin2);

        MPType d = m1 * sin(m1 * acos(x) + m2) / sqrt(one - x * x);
        logits_grad[i] = static_cast<T>(dout * d);
      }
    } else {
      logits_grad[i] *= loss_grad[row];
    }
    if (fabs(scale - 1.0) > 1e-8) {
      logits_grad[i] *= static_cast<T>(scale);
    }
  }
}

template <typename T>
class MarginCrossEntropyOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Tensor* logits = ctx.Input<Tensor>("Logits");
    const Tensor* labels = ctx.Input<Tensor>("Label");
    Tensor* softmax = ctx.Output<Tensor>("Softmax");
    Tensor* loss = ctx.Output<Tensor>("Loss");

    const int rid = ctx.Attr<int>("ring_id");
    const int nranks = ctx.Attr<int>("nranks");
    const int rank = ctx.Attr<int>("rank");

    const float margin1 = ctx.Attr<float>("margin1");
    const float margin2 = ctx.Attr<float>("margin2");
    const float margin3 = ctx.Attr<float>("margin3");
    const float scale = ctx.Attr<float>("scale");

    const auto& place = ctx.GetPlace();
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    platform::NCCLComm* comm;
    gpuStream_t stream;
    if (nranks > 1) {
      comm = platform::NCCLCommContext::Instance().Get(rid, place);

      // use global calculate stream
      stream = static_cast<platform::CUDADeviceContext*>(
                   platform::DeviceContextPool::Instance().Get(place))
                   ->stream();
    }
#endif

    // allocate memory on device.
    T* softmax_ptr = softmax->mutable_data<T>(place);
    T* loss_ptr = loss->mutable_data<T>(place);

    const auto& logits_dims = logits->dims();
    const auto& labels_dims = labels->dims();

    const int axis = logits_dims.size() - 1;
250 251
    const int N = phi::funcs::SizeToAxis(axis, logits_dims);
    const int D = phi::funcs::SizeFromAxis(axis, logits_dims);
252 253 254

    int blocks = NumBlocks(N);
    int threads = kNumCUDAThreads;
255
    const auto& label_type = framework::TransToProtoVarType(labels->dtype());
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    // copy logits to softmax variable since we can't modify logits,
    // and it also be used when calculate grad
    framework::TensorCopy(*logits, ctx.GetPlace(), ctx.device_context(),
                          softmax);

    Tensor softmax_2d;
    softmax_2d.ShareDataWith(*softmax).Resize({N, D});
    T* logits_ptr = softmax_2d.data<T>();

    Tensor class_interval;
    GetClassInterval(dev_ctx.stream(), place, ctx.cuda_device_context(), rid,
                     rank, nranks, D, &class_interval);

    // step 1, preprocess logits
    // add margin for positive elements
    // theta = acos(x_i)
    // (cos(m1 * theta + m2) - m3)
    // save match_logits, used for gradient computation.
    if (label_type == framework::proto::VarType::INT32) {
      typedef int32_t LabelT;
      AddMarginToPositiveLogitsKernel<
          T><<<NumBlocks(N), threads, 0, dev_ctx.stream()>>>(
          logits_ptr, labels->data<LabelT>(), margin1, margin2, margin3, rank,
          nranks, N, D, class_interval.data<int>());
    } else if (label_type == framework::proto::VarType::INT64) {
      typedef int64_t LabelT;
      AddMarginToPositiveLogitsKernel<
          T><<<NumBlocks(N), threads, 0, dev_ctx.stream()>>>(
          logits_ptr, labels->data<LabelT>(), margin1, margin2, margin3, rank,
          nranks, N, D, class_interval.data<int>());
G
Guoxia Wang 已提交
287 288 289 290 291
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "margin_cross_entropy label type noly support int32 and int64, "
          "but got %s",
          label_type));
292 293 294 295 296 297 298 299 300 301 302
    }

    // scale by s
    ScaleLogitKernel<T><<<NumBlocks(N * D), threads, 0, dev_ctx.stream()>>>(
        logits_ptr, scale, N, D);

    // step 2, obtain logit_max
    Tensor logits_max;
    logits_max =
        ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>({N, 1}, dev_ctx);
    T* logits_max_buff = logits_max.mutable_data<T>(place);
303
    TensorReduceImpl<T, T, kps::MaxFunctor, kps::IdentityFunctor<T>>(
W
Wilber 已提交
304
        dev_ctx, softmax_2d, &logits_max, kps::IdentityFunctor<T>(), {1},
305
        dev_ctx.stream());
306 307 308

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    if (nranks > 1) {
309
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
310
          logits_max_buff, logits_max_buff, logits_max.numel(),
311 312 313
          platform::ToNCCLDataType(
              framework::TransToProtoVarType(logits_max.dtype())),
          ncclMax, comm->comm(), stream));
314 315 316 317 318 319 320 321 322 323 324 325
    }
#endif

    // step 3, logit - logit_max
    LogitsMinusMaxKernel<T><<<NumBlocks(N * D), threads, 0, dev_ctx.stream()>>>(
        logits_ptr, logits_max_buff, N, D);

    // step 4, sum(exp(logit - logit_max))
    Tensor sum_exp_logits;
    sum_exp_logits =
        ctx.AllocateTmpTensor<T, platform::CUDADeviceContext>({N, 1}, dev_ctx);
    T* sum_exp_logits_buff = sum_exp_logits.mutable_data<T>(place);
326
    TensorReduceImpl<T, T, kps::AddFunctor, kps::ExpFunctor<T>>(
W
Wilber 已提交
327
        dev_ctx, softmax_2d, &sum_exp_logits, kps::ExpFunctor<T>(), {1},
328
        dev_ctx.stream());
329 330 331

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    if (nranks > 1) {
332
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
333
          sum_exp_logits_buff, sum_exp_logits_buff, sum_exp_logits.numel(),
334 335 336
          platform::ToNCCLDataType(
              framework::TransToProtoVarType(sum_exp_logits.dtype())),
          ncclSum, comm->comm(), stream));
337 338 339 340 341 342 343 344 345 346 347
    }
#endif

    // step 5, (logit - logit_max) - log(sum(exp(logit - logit_max)))
    LogitsMinusLogSumKernel<
        T><<<NumBlocks(N * D), threads, 0, dev_ctx.stream()>>>(
        logits_ptr, sum_exp_logits_buff, N, D);

    // step 6, prob = exp((logit - logit_max) - log(sum(exp(logit -
    // logit_max))))
    // loss = -((logit_i - logit_max) - log(sum(exp(logit - logit_max))))
348
    phi::funcs::SetConstant<platform::CUDADeviceContext, T>()(
349
        dev_ctx, loss, static_cast<T>(0.0));
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    if (label_type == framework::proto::VarType::INT32) {
      typedef int32_t LabelT;
      HardLabelSoftmaxWithCrossEntropyKernel<
          T, LabelT><<<blocks, threads, 0, dev_ctx.stream()>>>(
          loss_ptr, logits_ptr, labels->data<LabelT>(), rank, N, D,
          class_interval.data<int>());
    } else if (label_type == framework::proto::VarType::INT64) {
      typedef int64_t LabelT;
      HardLabelSoftmaxWithCrossEntropyKernel<
          T, LabelT><<<blocks, threads, 0, dev_ctx.stream()>>>(
          loss_ptr, logits_ptr, labels->data<LabelT>(), rank, N, D,
          class_interval.data<int>());
    }

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    if (nranks > 1) {
366
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
367
          loss_ptr, loss_ptr, loss->numel(),
368 369 370
          platform::ToNCCLDataType(
              framework::TransToProtoVarType(loss->dtype())),
          ncclSum, comm->comm(), stream));
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    }
#endif
  }
};

template <typename T>
class MarginCrossEntropyGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* labels = context.Input<Tensor>("Label");
    const Tensor* logits = context.Input<Tensor>("Logits");
    const Tensor* softmax = context.Input<Tensor>("Softmax");

    const Tensor* loss_grad =
        context.Input<Tensor>(framework::GradVarName("Loss"));
    Tensor* logit_grad =
        context.Output<Tensor>(framework::GradVarName("Logits"));

    const bool return_softmax = context.Attr<bool>("return_softmax");

    const int rid = context.Attr<int>("ring_id");
    const int nranks = context.Attr<int>("nranks");
    const int rank = context.Attr<int>("rank");

    const float margin1 = context.Attr<float>("margin1");
    const float margin2 = context.Attr<float>("margin2");
    const float margin3 = context.Attr<float>("margin3");
    const float scale = context.Attr<float>("scale");

    auto& dev_ctx =
        context.template device_context<platform::CUDADeviceContext>();

    const auto sofrmax_dims = softmax->dims();
    const int axis = sofrmax_dims.size() - 1;
405 406
    const int N = phi::funcs::SizeToAxis(axis, sofrmax_dims);
    const int D = phi::funcs::SizeFromAxis(axis, sofrmax_dims);
407 408 409 410 411 412 413 414 415 416

    if (return_softmax) {
      framework::TensorCopy(*softmax, context.GetPlace(),
                            context.device_context(), logit_grad);
    } else {
      logit_grad->ShareDataWith(*softmax);
    }

    int blocks = NumBlocks(N * D);
    int threads = kNumCUDAThreads;
417
    const auto& label_type = framework::TransToProtoVarType(labels->dtype());
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

    Tensor class_interval;
    GetClassInterval(dev_ctx.stream(), context.GetPlace(),
                     context.cuda_device_context(), rid, rank, nranks, D,
                     &class_interval);

    if (label_type == framework::proto::VarType::INT32) {
      typedef int32_t LabelT;
      CalculateGrad<T, LabelT><<<blocks, threads, 0, dev_ctx.stream()>>>(
          logit_grad->data<T>(), loss_grad->data<T>(), logits->data<T>(),
          labels->data<LabelT>(), margin1, margin2, scale, rank, N, D,
          class_interval.data<int>());
    } else if (label_type == framework::proto::VarType::INT64) {
      typedef int64_t LabelT;
      CalculateGrad<T, LabelT><<<blocks, threads, 0, dev_ctx.stream()>>>(
          logit_grad->data<T>(), loss_grad->data<T>(), logits->data<T>(),
          labels->data<LabelT>(), margin1, margin2, scale, rank, N, D,
          class_interval.data<int>());
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_CUDA_KERNEL(margin_cross_entropy,
                        ops::MarginCrossEntropyOpCUDAKernel<float>,
                        ops::MarginCrossEntropyOpCUDAKernel<double>,
                        ops::MarginCrossEntropyOpCUDAKernel<plat::float16>);

REGISTER_OP_CUDA_KERNEL(margin_cross_entropy_grad,
                        ops::MarginCrossEntropyGradCUDAKernel<float>,
                        ops::MarginCrossEntropyGradCUDAKernel<double>,
                        ops::MarginCrossEntropyGradCUDAKernel<plat::float16>);