executor.cc 19.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
17
#include <memory>
18
#include <unordered_map>
19
#include <unordered_set>
S
sneaxiy 已提交
20
#include <utility>
D
dongdaxiang 已提交
21 22 23
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
Y
Yi Wang 已提交
24 25 26 27 28
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
D
dongdaxiang 已提交
29 30
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
31
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
32
#include "paddle/fluid/framework/variable_helper.h"
Z
Zeng Jinle 已提交
33
#include "paddle/fluid/operators/controlflow/conditional_block_op_helper.h"
34
#include "paddle/fluid/operators/controlflow/recurrent_op_helper.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
36
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
38
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
39

40
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
41
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
42 43
#endif

D
dzhwinter 已提交
44
DECLARE_bool(benchmark);
45
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
46
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
Q
qijun 已提交
47 48 49

namespace paddle {
namespace framework {
X
Xin Pan 已提交
50 51 52 53 54
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
55

Q
Qiao Longfei 已提交
56
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
57 58 59 60 61
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
Z
Zeng Jinle 已提交
62 63 64 65 66 67 68 69 70 71 72
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) {
    // FIXME(zjl): There is difference when ngraph and gc are both enabled
    // in unittests. I do not know why it happens. Maybe ngraph engine
    // would cache some variables?
    LOG_FIRST_N(WARNING, 1)
        << "FLAGS_use_ngraph=True, garbage collection strategy is "
           "disabled in Executor";
    force_disable_gc = true;
  }
#endif
S
sneaxiy 已提交
73 74 75
  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
S
sneaxiy 已提交
76
  }
Z
Zeng Jinle 已提交
77 78 79 80

  // If gc is enabled and block size > 1
  if (prog_.Size() > 1) {
    operators::PrepareSafeEagerDeletionOnConditionalOpAndConditionalGradOp(
81 82 83
        prog_, block_id_, ops_);
    operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(prog_, block_id_,
                                                               ops_);
Z
Zeng Jinle 已提交
84
    operators::PrepareSafeEagerDeletionOnRecurrentOpAndRecurrentGradOp(
85
        prog_, block_id_, ops_);
Z
Zeng Jinle 已提交
86
  }
S
sneaxiy 已提交
87
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
88
}
Y
Yu Yang 已提交
89

Q
Qiao Longfei 已提交
90
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
91
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
92
}
Y
Yu Yang 已提交
93

D
dzhwinter 已提交
94
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
95

96 97 98 99 100 101 102 103 104 105
Executor::~Executor() {
#ifdef PADDLE_WITH_MKLDNN
  // Clear mkl-dnn cache, unless explicitly
  // (as set in constructor) marked not to do so
  // this is needed to have mkl-dnn unit tests working
  if (platform::is_cpu_place(place_)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place_);
    dev_ctx->ResetBlobMap();
106
    platform::set_cur_paddle_data_layout(paddle::framework::DataLayout::kNCHW);
107 108 109 110
  }
#endif
}

Y
Yancey1989 已提交
111
void Executor::Close() {
W
Wu Yi 已提交
112
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
113 114
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
115 116 117
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
118
#endif
Y
Yancey1989 已提交
119
}
W
Wu Yi 已提交
120

L
Liu Yiqun 已提交
121 122 123
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
124 125 126 127 128 129 130 131 132 133 134 135 136 137

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
138
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
139 140
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
141 142
      } else {
        auto* ptr = scope->Var(var->Name());
143
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
144 145
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
146 147 148 149 150
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
151
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
152 153
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
154 155 156 157
    }
  }
}

158 159 160
std::shared_ptr<TrainerBase> Executor::InitForDataset(
    const ProgramDesc& main_program, const std::string& trainer_desc_str,
    Scope* scope, Dataset* dataset) {
D
dongdaxiang 已提交
161 162
  VLOG(3) << "Start to RunFromDataset in executor";
  TrainerDesc trainer_desc;
H
hutuxian 已提交
163
  bool success = trainer_desc.ParseFromString(trainer_desc_str);
164 165
  PADDLE_ENFORCE_EQ(success, true, "Fail to parse TrainerDesc from string:\n%s",
                    trainer_desc_str.c_str());
D
dongdaxiang 已提交
166 167 168 169 170 171 172 173
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
D
dongdaxiang 已提交
174
  trainer->SetScope(scope);
D
dongdaxiang 已提交
175 176 177 178 179
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
180 181 182 183 184 185
  return trainer;
}

void Executor::RunFromDataset(std::shared_ptr<TrainerBase> trainer) {
  PADDLE_ENFORCE_NE(trainer, nullptr,
                    "Trainer is nullptr, invoke InitForDataset first");
D
dongdaxiang 已提交
186 187 188
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
189 190 191
}

void Executor::ReleaseTrainer(std::shared_ptr<TrainerBase> trainer) {
D
dongdaxiang 已提交
192 193 194
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
}
D
dongdaxiang 已提交
195

Y
Yu Yang 已提交
196
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
197 198 199
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
                   bool force_disable_gc) {
X
Xin Pan 已提交
200
  platform::RecordBlock b(block_id);
201
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
202
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
Q
Qiao Longfei 已提交
203
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
204 205
}

206 207 208 209 210 211 212
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
213
    const BlockDesc& block,
L
Liu Yiqun 已提交
214
    const std::map<std::string, const LoDTensor*>& feed_targets,
215 216
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
217
  for (auto* op : block.AllOps()) {
218 219
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
220
      // The input variable's name of feed_op should be feed_holder_name.
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

236
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
237
      // When feed operator are present, so should be feed_holder.
238 239 240 241 242 243 244
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
245 246 247 248 249 250 251 252 253 254 255 256
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
257 258
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
259 260
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
261
  for (auto* op : block.AllOps()) {
262 263
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
264
      // The output variable's name of fetch_op should be fetch_holder_name.
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

280
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
281
      // When fetch operator are present, so should be fetch_holder.
282 283 284 285 286 287 288
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
289 290 291 292 293
  }

  return fetch_count > 0;
}

294 295 296
std::unique_ptr<ExecutorPrepareContext> Executor::PrepareCtxCache(
    const ProgramDesc& program, int block_id,
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
297
  return Prepare(program, block_id, skip_ref_cnt_vars, force_disable_gc);
298 299
}

300
void Executor::Run(const ProgramDesc& program, Scope* scope,
301 302
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
303 304
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
305
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
306
  platform::RecordBlock b(kProgramId);
307
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
308
  bool has_feed_ops =
309
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
310
  bool has_fetch_ops =
311
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
312 313

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
314
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
315
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
316 317
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
318
  }
319 320
  auto* global_block = copy_program->MutableBlock(0);

321
  if (!has_feed_ops) {
322 323
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
324
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
325 326 327
    feed_holder->SetPersistable(true);

    int i = 0;
328
    for (auto& feed_target : (*feed_targets)) {
329
      std::string var_name = feed_target.first;
M
minqiyang 已提交
330
      VLOG(3) << "feed target's name: " << var_name;
331 332 333 334 335 336 337 338 339 340 341 342 343

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

344
  if (!has_fetch_ops) {
345 346
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
347
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
348 349 350
    fetch_holder->SetPersistable(true);

    int i = 0;
351
    for (auto& fetch_target : (*fetch_targets)) {
352
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
353
      VLOG(3) << "fetch target's name: " << var_name;
354 355 356 357 358 359 360 361 362 363 364 365 366

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

367
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
368 369 370
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
371 372
}

Q
Qiao Longfei 已提交
373
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
374
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
375
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
376 377
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
378 379 380 381 382
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
383
#ifdef PADDLE_WITH_NGRAPH
384
  if (FLAGS_use_ngraph && ctx->block_id_ == 0) {
385 386 387 388
    paddle::operators::NgraphEngine::FuseNgraphOps(
        ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
  }
#endif
S
sneaxiy 已提交
389
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
390
  return ctx;
Y
Yu Yang 已提交
391 392
}

T
refine  
typhoonzero 已提交
393
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
394
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
395 396
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
S
fix bug  
sneaxiy 已提交
397 398 399 400
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
401
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
402
  size_t idx = 0;
T
typhoonzero 已提交
403 404
  for (auto& bid : block_ids) {
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
S
sneaxiy 已提交
405
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
406 407 408 409
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
410 411 412 413 414
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
415
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
416
    ++idx;
T
typhoonzero 已提交
417 418 419 420
  }
  return result;
}

Y
Yu Yang 已提交
421
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
422 423
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
424
  platform::RecordBlock b(kProgramId);
425
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
426 427 428 429
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
430 431
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
432
  }
Y
Yu Yang 已提交
433

S
sneaxiy 已提交
434
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
435
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
436
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
437 438
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
439
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
440
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
441 442
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
443
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
444 445 446
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
447
#endif
S
sneaxiy 已提交
448 449
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
450 451 452 453 454
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

Y
Yu Yang 已提交
455
  for (auto& op : ctx->ops_) {
456
    op->Run(*local_scope, place_);
S
fix bug  
sneaxiy 已提交
457
    if (gc) {
S
sneaxiy 已提交
458
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
459
    }
Y
Yu Yang 已提交
460
  }
S
sneaxiy 已提交
461

S
fix bug  
sneaxiy 已提交
462
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
463

Q
qiaolongfei 已提交
464
  if (local_scope != scope) {
Y
Yu Yang 已提交
465
    scope->DeleteScope(local_scope);
466
  } else {
Q
qiaolongfei 已提交
467 468 469 470 471
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
472 473
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
474 475
      scope->DropKids();
    }
Y
Yu Yang 已提交
476 477 478
  }
}

479 480
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
481
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
482 483 484
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
485 486
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

487
  PADDLE_ENFORCE(
488
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
489 490
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
491
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
492 493
      "Program in the prepared context should has fetch_ops.");

494 495 496 497 498
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
499 500
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
501 502 503
    }
  }

W
Wu Yi 已提交
504
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
505 506 507 508 509 510

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
511
      *(*fetch_targets)[fetch_target_name] =
512 513 514 515 516
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

517 518
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
519
  VLOG(3) << "use_mkldnn=True";
520 521 522 523 524 525 526 527
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
528 529 530
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
531 532
#endif
}
Q
qijun 已提交
533 534
}  // namespace framework
}  // namespace paddle