test_model.py 21.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import os
import numpy as np
import shutil
import tempfile

L
Leo Chen 已提交
25
import paddle
26
from paddle import fluid
27
from paddle import to_tensor
28
from paddle.nn import Conv2d, Pool2D, Linear, ReLU, Sequential, Softmax
29

30 31
from paddle import Model
from paddle.static import InputSpec
32
from paddle.nn.layer.loss import CrossEntropyLoss
33
from paddle.metric import Accuracy
34 35 36 37
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
from paddle.io import DistributedBatchSampler
from paddle.hapi.model import prepare_distributed_context
38 39
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
40 41


42
class LeNetDygraph(paddle.nn.Layer):
43
    def __init__(self, num_classes=10, classifier_activation=None):
44 45 46
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
47
            Conv2d(
48
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
49
            ReLU(),
50
            Pool2D(2, 'max', 2),
51
            Conv2d(
52
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
53
            ReLU(),
54 55 56 57
            Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = Sequential(
58 59
                Linear(400, 120), Linear(120, 84), Linear(84, 10),
                Softmax())  #Todo: accept any activation
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
    optim = fluid.optimizer.Adam(
        learning_rate=0.001, parameter_list=model.parameters())
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
102
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

            cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] ==
                    labels.numpy()).astype('int').sum()

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
            self.skipTest('module not tested when ONLY_CPU compling')
129
        cls.device = paddle.set_device('gpu')
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
        cls.test_dataset = MnistDataset(
            mode='test', return_label=False, sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(
            cls.train_dataset, places=cls.device, batch_size=64)
        cls.val_loader = fluid.io.DataLoader(
            cls.val_dataset, places=cls.device, batch_size=64)
        cls.test_loader = fluid.io.DataLoader(
            cls.test_dataset, places=cls.device, batch_size=64)

        seed = 333
L
Leo Chen 已提交
146 147
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
148 149 150 151 152 153 154

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

155 156
        cls.inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')]
        cls.labels = [InputSpec([None, 1], 'int64', 'label')]
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

        cls.save_dir = tempfile.mkdtemp()
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

174 175 176 177 178 179
    def test_fit_dynamic_with_rank(self):
        self.fit(True, 2, 0)

    def test_fit_static_with_rank(self):
        self.fit(False, 2, 0)

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

195
    def fit(self, dynamic, num_replicas=None, rank=None):
196 197
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
L
Leo Chen 已提交
198 199
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
200

201
        net = LeNet(classifier_activation=None)
202
        optim_new = fluid.optimizer.Adam(
203 204
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=self.inputs, labels=self.labels)
205 206
        model.prepare(
            optim_new,
207
            loss=CrossEntropyLoss(reduction="sum"),
208
            metrics=Accuracy())
209 210 211 212 213 214
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        train_sampler = DistributedBatchSampler(
215 216 217 218 219
            self.train_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
220
        val_sampler = DistributedBatchSampler(
221 222 223 224 225
            self.val_dataset,
            batch_size=64,
            shuffle=False,
            num_replicas=num_replicas,
            rank=rank)
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
244 245
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
265 266
        model = Model(LeNet(), self.inputs)
        model.prepare()
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        model.load(self.weight_path)
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

        sampler = DistributedBatchSampler(
            self.test_dataset, batch_size=64, shuffle=False)

        test_loader = fluid.io.DataLoader(
            self.test_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None


289
class MyModel(paddle.nn.Layer):
290
    def __init__(self, classifier_activation='softmax'):
291
        super(MyModel, self).__init__()
292 293
        self._fc = Linear(20, 10)
        self._act = Softmax()  #Todo: accept any activation
294 295 296

    def forward(self, x):
        y = self._fc(x)
297
        y = self._act(y)
298 299 300 301 302
        return y


class TestModelFunction(unittest.TestCase):
    def set_seed(self, seed=1024):
L
Leo Chen 已提交
303 304
        paddle.manual_seed(seed)
        paddle.framework.random._manual_program_seed(seed)
305 306 307 308 309 310 311 312 313

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
314
            m = MyModel(classifier_activation=None)
315 316 317
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
318 319
            output = m(to_tensor(data))
            loss = CrossEntropyLoss(reduction='sum')(output, to_tensor(label))
320 321 322 323 324 325 326 327 328
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
329
            device = paddle.set_device('cpu')
330 331 332
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

333
            net = MyModel(classifier_activation=None)
334
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
335
                                         parameter_list=net.parameters())
336

337 338
            inputs = [InputSpec([None, dim], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
339
            model = Model(net, inputs, labels)
340
            model.prepare(optim2, loss=CrossEntropyLoss(reduction="sum"))
341 342 343 344
            loss, = model.train_batch([data], [label])
            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

345
    def test_test_batch(self):
346 347 348 349 350 351 352 353
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
354
            output = m(to_tensor(data))
355 356 357 358 359
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
360
            device = paddle.set_device('cpu')
361 362
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
363
            net = MyModel()
364
            inputs = [InputSpec([None, dim], 'float32', 'x')]
365 366
            model = Model(net, inputs)
            model.prepare()
367 368
            out, = model.test_batch([data])

369
            np.testing.assert_allclose(out, ref, rtol=1e-6)
370 371 372 373 374
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
        path = tempfile.mkdtemp()
        for dynamic in [True, False]:
375
            device = paddle.set_device('cpu')
376
            fluid.enable_dygraph(device) if dynamic else None
377
            net = MyModel(classifier_activation=None)
378 379
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
380
            optim = fluid.optimizer.SGD(learning_rate=0.001,
381 382
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
383
            model.prepare(
384
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
385 386 387 388 389
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            fluid.disable_dygraph() if dynamic else None

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    def test_dynamic_load(self):
        mnist_data = MnistDataset(mode='train')
        for new_optimizer in [True, False]:
            path = tempfile.mkdtemp()
            paddle.disable_static()
            net = LeNet()
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
            labels = [InputSpec([None, 1], 'int64', 'label')]
            if new_optimizer:
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=net.parameters())
            else:
                optim = fluid.optimizer.Adam(
                    learning_rate=0.001, parameter_list=net.parameters())
            model = Model(net, inputs, labels)
            model.prepare(
                optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
            model.fit(mnist_data, batch_size=64, verbose=0)
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            paddle.enable_static()

413 414
    def test_dynamic_save_static_load(self):
        path = tempfile.mkdtemp()
415
        # dynamic saving
416
        device = paddle.set_device('cpu')
417
        fluid.enable_dygraph(device)
L
LiuChiaChi 已提交
418
        model = Model(MyModel(classifier_activation=None))
419 420
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
421
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
422 423
        model.save(path + '/test')
        fluid.disable_dygraph()
424

425 426
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
427
        model = Model(MyModel(classifier_activation=None), inputs, labels)
428 429
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
430
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
431 432 433 434 435 436
        model.load(path + '/test')
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
        path = tempfile.mkdtemp()

437
        net = MyModel(classifier_activation=None)
438 439
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
440
        optim = fluid.optimizer.SGD(learning_rate=0.001,
441 442
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
443
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
444 445
        model.save(path + '/test')

446
        device = paddle.set_device('cpu')
447 448
        fluid.enable_dygraph(device)  #if dynamic else None

449
        net = MyModel(classifier_activation=None)
450 451
        inputs = [InputSpec([None, 20], 'float32', 'x')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
452
        optim = fluid.optimizer.SGD(learning_rate=0.001,
453 454
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
455
        model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
456 457 458 459 460 461
        model.load(path + '/test')
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
462
            device = paddle.set_device('cpu')
463
            fluid.enable_dygraph(device) if dynamic else None
464
            net = MyModel()
465
            inputs = [InputSpec([None, 20], 'float32', 'x')]
466 467
            model = Model(net, inputs)
            model.prepare()
468 469 470 471 472
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

L
LielinJiang 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
    def test_summary(self):
        def _get_param_from_state_dict(state_dict):
            params = 0
            for k, v in state_dict.items():
                params += np.prod(v.numpy().shape)
            return params

        for dynamic in [True, False]:
            device = paddle.set_device('cpu')
            fluid.enable_dygraph(device) if dynamic else None
            net = MyModel()
            inputs = [InputSpec([None, 20], 'float32', 'x')]
            model = Model(net, inputs)
            model.prepare()
            params_info = model.summary()
            gt_params = _get_param_from_state_dict(net.state_dict())

            np.testing.assert_allclose(params_info['total_params'], gt_params)
            print(params_info)

493 494
            model.summary(input_size=(20))
            model.summary(input_size=[(20)])
L
LielinJiang 已提交
495
            model.summary(input_size=(20), dtype='float32')
496

L
LielinJiang 已提交
497 498
    def test_summary_nlp(self):
        paddle.enable_static()
L
LielinJiang 已提交
499 500 501 502 503 504 505
        nlp_net = paddle.nn.GRU(input_size=2,
                                hidden_size=3,
                                num_layers=3,
                                direction="bidirectional")
        paddle.summary(nlp_net, (1, 1, 2))
        rnn = paddle.nn.LSTM(16, 32, 2)
        paddle.summary(rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])
L
LielinJiang 已提交
506 507 508 509

    def test_summary_error(self):
        with self.assertRaises(TypeError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
510
            paddle.summary(nlp_net, (1, 1, '2'))
L
LielinJiang 已提交
511 512 513 514 515 516 517

        with self.assertRaises(ValueError):
            nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
            paddle.summary(nlp_net, (-1, -1))

        paddle.disable_static()
        nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
L
LielinJiang 已提交
518
        paddle.summary(nlp_net, (1, 1, 2))
L
LielinJiang 已提交
519

520
    def test_export_deploy_model(self):
521
        for dynamic in [True, False]:
522
            paddle.disable_static() if dynamic else None
523 524
            prog_translator = ProgramTranslator()
            prog_translator.enable(False) if not dynamic else None
525
            net = LeNet()
526
            inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')]
527 528 529 530 531 532 533
            model = Model(net, inputs)
            model.prepare()
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            tensor_img = np.array(
                np.random.random((1, 1, 28, 28)), dtype=np.float32)
534

535
            model.save(save_dir, training=False)
536
            ori_results = model.test_batch(tensor_img)
537
            fluid.disable_dygraph() if dynamic else None
538

539 540 541 542 543 544 545 546 547 548 549 550 551 552
            place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                exe = fluid.Executor(place)
                [inference_program, feed_target_names, fetch_targets] = (
                    fluid.io.load_inference_model(
                        dirname=save_dir, executor=exe))
                results = exe.run(inference_program,
                                  feed={feed_target_names[0]: tensor_img},
                                  fetch_list=fetch_targets)
                np.testing.assert_allclose(
                    results, ori_results, rtol=1e-5, atol=1e-7)
                shutil.rmtree(save_dir)
553
            paddle.enable_static()
554

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
    def test_export_deploy_model_without_inputs_in_dygraph(self):
        mnist_data = MnistDataset(mode='train')
        paddle.disable_static()
        for initial in ["fit", "train_batch", "eval_batch", "test_batch"]:
            save_dir = tempfile.mkdtemp()
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
                net = LeNet()
                model = Model(net)
                model.prepare(
                    optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
                if initial == "fit":
                    model.fit(mnist_data, batch_size=64, verbose=0)
                else:
                    img = np.array(
                        np.random.random((1, 1, 28, 28)), dtype=np.float32)
                    label = np.array(np.random.rand(1, 1), dtype=np.int64)
                    if initial == "train_batch":
L
LiuChiaChi 已提交
573
                        model.train_batch([img], [label])
574
                    elif initial == "eval_batch":
L
LiuChiaChi 已提交
575
                        model.eval_batch([img], [label])
576
                    else:
L
LiuChiaChi 已提交
577
                        model.test_batch([img])
578 579 580 581

                model.save(save_dir, training=False)
                shutil.rmtree(save_dir)

582

583 584 585 586
class TestRaiseError(unittest.TestCase):
    def test_input_without_name(self):
        net = MyModel(classifier_activation=None)

587 588
        inputs = [InputSpec([None, 10], 'float32')]
        labels = [InputSpec([None, 1], 'int64', 'label')]
589 590 591
        with self.assertRaises(ValueError):
            model = Model(net, inputs, labels)

592 593 594 595 596 597 598 599 600 601
    def test_export_deploy_model_without_inputs_and_run_in_dygraph(self):
        paddle.disable_static()
        net = MyModel(classifier_activation=None)
        save_dir = tempfile.mkdtemp()
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        with self.assertRaises(RuntimeError):
            model = Model(net)
            model.save(save_dir, training=False)
        paddle.enable_static()
602

603

604 605
if __name__ == '__main__':
    unittest.main()