engine.py 31.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import logging
from collections import defaultdict
18
import socket
19 20

import paddle
21
import paddle.utils as utils
22

23
from paddle import fluid, static
24
from paddle.io import Dataset
25
from paddle.jit import to_static
26
from paddle.metric import Metric
27
from paddle.static import InputSpec
28
from paddle.fluid import core
29
from paddle.fluid import program_guard
30
from paddle.fluid.layers.utils import flatten
31
from paddle.fluid.executor import global_scope, _to_name_str
32
from paddle.fluid.backward import append_backward
33
from paddle.fluid.framework import Operator, Parameter, _non_static_mode
34 35
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
36
from paddle.distributed import fleet
37
from paddle.distributed.utils import get_logger
38
from paddle.distributed.passes import new_pass, PassContext
39

40
from .hepler import ProgramHelper
41 42
from ..collective import _get_global_env
from .cluster import Cluster, get_default_cluster
43 44
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
45 46 47 48 49
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .dist_loader import NonIterableGeneratorLoader
from .utils import make_data_unshard, set_grad_var_shape
from .utils import print_program_with_dist_attr, to_list
50
from .process_group import new_process_group, get_all_process_groups, get_world_process_group
51
from .dist_context import DistributedContext, get_default_distributed_context
52 53 54


class Engine:
55

56 57 58 59 60
    def __init__(self,
                 model=None,
                 inputs_spec=None,
                 labels_spec=None,
                 cluster=None,
61 62
                 strategy=None,
                 user_tuning_config=None):
63
        self.model = model
64 65
        self.inputs_spec = self._validate_spec(inputs_spec)
        self.labels_spec = self._validate_spec(labels_spec)
66
        self.cluster = cluster
67 68
        if self.cluster is None:
            self.cluster = get_default_cluster()
69
        self.strategy = strategy
70 71
        if self.strategy is None:
            self.strategy = fleet.DistributedStrategy()
72
        self._user_tuning_config = user_tuning_config
73

74
        self._executor = None
75 76 77 78 79
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
        self._logger = get_logger(logging.INFO)

80 81
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
82
        self._orig_dist_context = get_default_distributed_context()
83
        self._dist_contexts = {}
84 85
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
86 87 88 89
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
90
        self._planners = {}
91 92 93 94 95
        self._mode_init_states = {
            "train": False,
            "eval": False,
            "predict": False
        }
96
        self._dygraph_mode = False
97 98 99 100

    def prepare(self,
                optimizer=None,
                loss=None,
101
                gradient_scale=True,
102 103
                metrics=None,
                all_ranks=False):
104 105 106
        if optimizer and not isinstance(
                optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
107 108 109 110
            raise TypeError(
                    "'optimizer' must be object of class `paddle.optimizer.Optimizer`" \
                        " or `paddle.fluid.optimizer.Optimizer`."
                )
111
        self._optimizer = optimizer
112
        self._all_ranks = all_ranks
113 114 115 116 117 118

        if loss and not isinstance(loss,
                                   paddle.nn.Layer) and not callable(loss):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
            )
119
        self._loss = loss
120 121 122 123 124 125

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
126
        self._metrics = to_list(metrics)
127
        self._gradient_scale = gradient_scale
128
        self._planned_mode = None
129
        self._prepare_single_mode("train")
130

131
    def _prepare_single_mode(self, mode):
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

        self._build(mode)
        # Do the planning process
        self._plan(mode)

        # Do the Optimization tuning
        if self._user_tuning_config and mode == "train":
            self._optimization_tuning(mode)

        # Do the parallel process
        self._parallel(mode, self._all_ranks)

        # Init comm and startup program
        self._initialize(mode)
        self._mode_init_states[mode] = True
147

148
    def _build(self, mode):
149
        if _non_static_mode() or self._dygraph_mode:
150
            paddle.disable_static()
151 152 153
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

154 155 156
            program_helper = ProgramHelper(self.model, self._loss,
                                           self._metrics, self.inputs_spec,
                                           self.labels_spec)
157
            # build forward main program
158
            program_helper.build_program(mode)
159

160 161 162
            self.concrete_program = program_helper.concrete_program
            serial_main_prog = program_helper.main_program
            serial_startup_prog = program_helper.startup_program
163

164 165 166 167 168
            inputs = program_helper.input_vars
            outputs = program_helper.output_vars
            labels = program_helper.label_vars
            losses = program_helper.loss_vars
            metrics = program_helper.metric_vars
169

170
            paddle.enable_static()
171 172 173 174 175 176 177 178 179 180
        else:
            # build program in static mode
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

            losses = []
            metrics = []
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
181
            # FIXME to support grad clip
182 183 184 185 186 187 188 189 190 191 192 193 194 195
            with static.program_guard(serial_main_prog, serial_startup_prog), \
                utils.unique_name.guard():
                inputs_spec = self.inputs_spec
                labels_spec = self.labels_spec if self.labels_spec else []
                inputs = [s._create_feed_layer() for s in inputs_spec]
                labels = [s._create_feed_layer() for s in labels_spec]
                outputs = to_list(self.model(*inputs))
                if mode != "predict" and self._loss:
                    losses = to_list(self._loss(*(outputs + labels)))

                if mode != "predict":
                    for metric in self._metrics:
                        metrics.extend(
                            to_list(metric.compute(*(outputs + labels))))
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True

        feed_vars = {"inputs": inputs, "labels": labels}

        fetch_vars = {
            "outputs": flatten(outputs),
            "loss": losses,
            "metrics": metrics
        }

212
        self._set_recompute_ckpts()
213 214 215 216
        self._dist_contexts[mode] = DistributedContext(
            serial_main_prog, serial_startup_prog, self._optimizer, losses,
            feed_vars, fetch_vars, self.cluster, self.strategy)
        self._dist_contexts[mode].gradient_scale = self._gradient_scale
217
        self._dist_contexts[mode]._dygraph_mode = self._dygraph_mode
218

219 220 221 222 223 224 225
    def _optimization_tuning(self, mode):

        self.mode = mode
        assert "batch_size" in self._user_tuning_config, "Optimization Tuning should provide with batch size."
        assert "dataset" in self._user_tuning_config, "Optimization Tuning should provide with dataset."
        batch_size = self._user_tuning_config["batch_size"]
        dataset = self._user_tuning_config["dataset"]
226 227
        dataset.dp_world_size = self._input_split_size
        dataset.dp_rank = self._input_split_rank
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

        from .tuner.optimization_tuner import OptimizationTuner
        self._optimization_tuner = OptimizationTuner(self._user_tuning_config,
                                                     self._dist_contexts[mode],
                                                     dataset,
                                                     self.inputs_spec,
                                                     self.labels_spec,
                                                     batch_size=batch_size,
                                                     rank=self._cur_rank)

        self._optimization_tuner.tune()

        if self._user_tuning_config["run_after_tuning"]:
            # update the strategy
            self._dist_contexts[
                mode]._strategy = self._optimization_tuner.get_best_config()
        else:
            return

247 248 249 250 251 252
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

253 254
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
255

256 257 258 259 260 261 262 263 264
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

265
        self._input_split_size, self._input_split_rank = self._get_input_split_info(
266 267
            feed_list[0], self._dist_contexts[mode])

268
    def _parallel(self, mode, all_ranks):
269 270 271
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
272
        parallelizer = Parallelizer(mode, self._planners[mode].completer,
273 274 275 276 277
                                    self._dist_contexts[mode])
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
278 279

    def _init_dist_context(self, mode):
280
        # Init dist_context['mode'] with the first planned dist_context
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
                assert op.type == ref_op.type, \
                    "'{}' mode op '{}' is different with '{}' op '{}'. ".format(mode, op.type, ref_mode, ref_op.type)
                ref_op_dist_attr = ref_dist_context.get_op_dist_attr_for_program(
                    ref_op)
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
298
        # Get the current content from the distributed context
299 300 301 302
        self._serial_main_progs[mode] = self._dist_contexts[
            mode].serial_main_program
        self._serial_startup_progs[mode] = self._dist_contexts[
            mode].serial_startup_program
303 304 305 306
        self._dist_main_progs[mode] = self._dist_contexts[
            mode].dist_main_programs
        self._dist_startup_progs[mode] = self._dist_contexts[
            mode].dist_startup_programs
307 308
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
309

310 311 312 313
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
314

315
            # NOTE: add the comm init control in the future for auto search
316 317 318 319
            for process_group in all_process_groups:
                if self._cur_rank not in process_group.ranks:
                    continue
                process_group.instantiate()
320 321 322 323

        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
            self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

        if self._dygraph_mode:
            paddle.disable_static()
            main_program = self._dist_main_progs[mode][self._cur_rank]
            for param in self.concrete_program.parameters:
                # create var in scope and share parameters to scope
                if param.name not in main_program.global_block().vars:
                    continue
                # get param_var's dist_attr
                var = main_program.global_block().vars[param.name]
                var_dist_attr = self._dist_contexts[
                    mode].get_tensor_dist_attr_for_program(var)
                dist_attr = {
                    "dims_mapping": var_dist_attr.dims_mapping,
                    "process_shape": var_dist_attr.process_mesh.topology,
                    "process_group": var_dist_attr.process_mesh.processes
                }
                # slice param_value with dist_attr
                # share sliced_param_value with param_tensor in global_scope
                from .converter import Converter
                param_tensor = global_scope().var(param.name).get_tensor()
                sliced_param = Converter.slice_with_dist_attr(
                    param.numpy(), dist_attr)
                shared_tensor = paddle.to_tensor(sliced_param,
                                                 place=self._place)
                param_tensor._share_data_with(
                    shared_tensor.value().get_tensor())
            paddle.enable_static()

353 354
        if self._executor is None:
            self._executor = paddle.static.Executor(self._place)
355 356 357 358 359 360 361 362 363 364
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
365

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
            if self.strategy.amp and self.strategy.amp_configs['use_pure_fp16']:
                # from paddle.fluid.contrib.mixed_precision.fp16_utils import cast_parameters_to_fp16
                def cast_parameters_to_fp16(place,
                                            program,
                                            scope=None,
                                            to_fp16_var_names=None):
                    """
                    Traverse all parameters in the whole model and set them to the FP16 data type.
                    Whereas, this function will keep parameters of batchnorms in FP32.
                    Args:
                        place(fluid.CPUPlace|fluid.CUDAPlace): `place` is used to restore the FP16 weight tensors.
                        program (Program): The used program.
                        scope(fluid.Scope, optional): `scope` is used to get the FP32 weight tensor values.
                                                    Default is None.
                        to_fp16_var_names(set|list, optional): The data types of vars in `to_fp16_var_names`
                                                            will be set to FP16. Usually, it is the returned
                                                            value of `cast_model_to_fp16` API.
                    """
                    from paddle.framework import core
                    import numpy as np
                    all_parameters = []
                    for block in program.blocks:
                        all_parameters.extend(block.all_parameters())

                    var_scope = scope if scope else paddle.static.global_scope()
                    for param in all_parameters:
                        if param.dtype == core.VarDesc.VarType.FP16:
                            param_t = var_scope.find_var(
                                param.name).get_tensor()
                            data = np.array(param_t)
                            param_t.set(np.float16(data), place)

                cast_parameters_to_fp16(self._place, prune_startup_prog)

400 401 402 403
    def fit(self,
            train_data,
            batch_size=1,
            epochs=1,
404
            fetches=None,
405 406
            steps_per_epoch=None,
            use_program_cache=False,
407
            return_numpy=True):
408 409
        # TODO: callbacks
        # TODO: evaluate after training
410 411 412 413 414 415

        if not self._mode_init_states['train']:
            raise Exception(
                "train program is not initialized yet, please call engine.prepare() before calling fit() funtion."
            )

416
        self.mode = 'train'
417
        assert self.mode in self._dist_main_progs, \
418
            "train model is not ready, please call `engine.prepare()` first."
419 420
        train_dataloader = self._create_dataloader(train_data, batch_size,
                                                   epochs, steps_per_epoch)
421

422 423
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
424
        fetch_list, fetch_map = self._fetch_map(fetch_loss, usr_fetch)
425
        for epoch in range(epochs):
426 427 428 429 430 431 432 433 434 435 436 437 438 439
            train_logs = {"epoch": epoch}
            for step, _ in enumerate(train_dataloader):
                outs = self._executor.run(self.main_program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_program_cache,
                                          return_numpy=return_numpy)
                train_logs["step"] = step
                # inner fetches
                if fetch_loss:
                    train_logs["train_loss"] = outs[0][0]
                # user fetches
                user_outs = outs[len(fetch_loss):]
                user_fetch_list = fetch_list[len(fetch_loss):]
                for i, out in enumerate(user_outs):
440
                    train_logs["train_" + fetch_map[user_fetch_list[i]]] = out
441
                self._logger.info(train_logs)
442

443 444 445
    def evaluate(self,
                 eval_data,
                 batch_size=1,
446
                 fetches=None,
447
                 use_program_cache=False,
448
                 return_numpy=True):
449
        self.mode = 'eval'
450 451 452
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)

453
        assert self.mode in self._dist_main_progs, \
454
            "eval model is not ready, please call `engine.prepare()` first."
455
        eval_dataloader = self._create_dataloader(eval_data, batch_size)
456

457 458 459
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
        fetch_metrics = self._validate_fetches(self.fetch_vars["metrics"])
460 461 462 463 464 465 466 467 468 469 470
        inner_fetch = dict(fetch_loss, **fetch_metrics)
        fetch_list, fetch_map = self._fetch_map(inner_fetch, usr_fetch)

        for step, _ in enumerate(eval_dataloader):
            eval_logs = {"step": step}
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            # inner fetches
            if fetch_loss:
471
                eval_logs["eval_loss"] = outs[0][0]
472 473 474 475 476 477 478 479 480
            # Metric
            if fetch_metrics:
                metric_out = outs[len(fetch_loss):len(inner_fetch)]
                for metric in self._metrics:
                    metric.update(*metric_out)
                    results = metric.accumulate()
                    for i, res in enumerate(to_list(results)):
                        eval_logs["eval_" + metric.name()[i]] = res
            # usr fetches
481
            usr_outs = outs[len(inner_fetch):]
482
            usr_fetch_list = fetch_list[len(inner_fetch):]
483
            for i, out in enumerate(usr_outs):
484 485
                eval_logs["eval_" + fetch_map[usr_fetch_list[i]]] = out
            # logger
486
            self._logger.info(eval_logs)
487

488 489 490
    def predict(self,
                test_data,
                batch_size=1,
491
                fetches=None,
492
                use_program_cache=False,
493
                return_numpy=True):
494
        self.mode = 'predict'
495 496 497
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)

498
        assert self.mode in self._dist_main_progs, \
499
            "predict model is not ready, please call `engine.prepare()` first."
500
        test_dataloader = self._create_dataloader(test_data, batch_size)
501

502 503
        usr_fetch = self._validate_fetches(fetches)
        fetch_outputs = self._validate_fetches(self.fetch_vars["outputs"])
504
        fetch_list, fetch_map = self._fetch_map(fetch_outputs, usr_fetch)
505 506

        outputs = []
507 508 509 510 511 512 513 514
        for step, _ in enumerate(test_dataloader):
            predict_logs = {"step": step}
            outs = self._executor.run(self.main_program,
                                      fetch_list=fetch_list,
                                      use_program_cache=use_program_cache,
                                      return_numpy=return_numpy)
            outputs.append(outs[:len(fetch_outputs)])
            for i, out in enumerate(outs):
515
                predict_logs["pred_" + fetch_map[fetch_list[i]]] = out
516
            self._logger.info(predict_logs)
517

518
        return outputs
519

520 521 522 523
    def _create_dataloader(self,
                           dataset,
                           batch_size,
                           epochs=1,
524
                           steps_per_epoch=None):
525 526 527 528
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
        dist_context = self._dist_contexts[self.mode]
        dist_main_block = dist_main_prog.global_block()
529

530
        # NOTE: Get feed_list from dist_program, then insert dataloader op
531 532
        # with sharded var shape. Because predict_program does not contain
        # labels var, so we will filter dataset's value with length of feed_list.
533 534 535 536 537 538 539 540
        inputs_var = self._feed_vars[self.mode]["inputs"]
        labels_var = self._feed_vars[self.mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])

        # remove the first three ops if multi run fit/evaluate/predict
541
        op_size = len(dist_main_block.ops)
542 543 544 545
        if dist_main_block.ops[0].type == 'create_py_reader':
            op_size -= 3
            for _ in range(3):
                dist_main_block._remove_op(0, sync=False)
546 547

        # insert read op at the end of program
548
        places = paddle.static.cuda_places()
549
        with static.program_guard(dist_main_prog, dist_startup_prog):
550
            dataloader = NonIterableGeneratorLoader(
551 552 553 554 555 556
                dataset,
                feed_list,
                places,
                batch_size,
                epochs,
                steps_per_epoch,
557 558
                data_parallel_world_size=self._input_split_size,
                data_parallel_rank=self._input_split_rank)
559 560

        # move read op from the end of program to the start of program
561
        new_op_size = len(dist_main_block.ops)
562
        for _ in range(new_op_size - 1, op_size - 1, -1):
563 564 565
            op = dist_main_block.ops[new_op_size - 1]
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(op.desc)
566 567 568
            new_op = Operator(dist_main_block,
                              new_op_desc,
                              type=new_op_desc.type())
569 570 571 572 573 574 575 576
            dist_main_block.ops.insert(0, new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        for _ in range(new_op_size - op_size):
            dist_main_block._remove_op(new_op_size, sync=False)
        dist_main_block._sync_with_cpp()
        return dataloader

577 578 579 580 581 582 583 584 585 586 587
    def _validate_spec(self, specs):
        specs = to_list(specs)
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
        return specs

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

    def _validate_fetches(self, fetches):
        # 1. Check user-defined fetches type
        # 2. Prepare fetches_dict like {user_defined_name: var_name}
        if not fetches:
            return {}
        if isinstance(fetches, dict):
            fetch_var_names = list(map(_to_name_str, fetches.values()))
            fetches_dict = dict(zip(fetch_var_names, list(fetches.keys())))
        elif isinstance(fetches, list):
            fetch_var_names = list(map(_to_name_str, fetches))
            fetches_dict = dict(zip(fetch_var_names, fetch_var_names))
603
        else:
604 605 606 607 608 609 610 611 612 613 614 615 616
            raise TypeError("'fetches' only support 'dict' and 'list', "
                            "but got '{}'".format(str(type(fetches))))
        return dict(
            filter(lambda x: self._is_local_var(x[0]), fetches_dict.items()))

    def _fetch_map(self, inner_fetch, usr_fetch):
        # replace inner fetch name if usr set for it
        for iname in inner_fetch:
            if iname in usr_fetch:
                inner_fetch[iname] = usr_fetch[iname]
                usr_fetch.pop(iname)
        fetches = dict(inner_fetch, **usr_fetch)
        return list(fetches.keys()), fetches
617

618 619
    def _get_input_split_info(self, var, dist_context):
        # deduce how the input data is split among the cluster
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
        from .utils import _get_comm_group, _get_corresponding_rank

        tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        process_mesh = tensor_dist_attr.process_mesh
        dims_mapping = tensor_dist_attr.dims_mapping

        if self._cur_rank not in process_mesh.processes:
            rank_id = _get_corresponding_rank(dist_context, process_mesh,
                                              self._cur_rank)
        else:
            rank_id = self._cur_rank

        batch_size_axis = dims_mapping[0]
        if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
            group_ranks = _get_comm_group(process_mesh.processes,
                                          process_mesh.topology,
                                          batch_size_axis, rank_id)
            return len(group_ranks), group_ranks.index(rank_id)

        return None, None

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
    def _set_recompute_ckpts(self):
        # NOTE hack to enable recompute in engine api for GPT-3
        # TODO support more PaddleNLP/CV models here

        config = self.strategy.recompute_configs

        # extract ckpts by specific model
        self.model
        if isinstance(self.model, paddle.nn.Layer):
            if hasattr(
                    self.model, "model"
            ) and self.model.model.__class__.__name__ == 'GPTForPretraining':
                exact_ckpts = self.model.model.gpt.checkpoints
        else:
            exact_ckpts = config["checkpoints"]

        # modify strategy
        if self.strategy.recompute:
            config["checkpoints"] = exact_ckpts[:]
            self.strategy.recompute_configs = config
            logs = {
                'Model Class': self.model.model.__class__.__name__,
                'Applied Recompute ckpts': exact_ckpts
            }
            self._logger.info(logs)

667 668 669 670 671
    def save(self, path, training=True, mode=None):
        if not mode:
            mode = self.mode

        if training:
672 673
            assert 'train' in self._serial_main_progs, \
                "training model is not ready, please call `engine.prepare()` first."
674 675 676
            serial_program = self._serial_main_progs["train"]
            dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
            dist_context = self._dist_contexts["train"]
677 678 679 680
            self._saver.save(path,
                             serial_program=serial_program,
                             dist_main_program=dist_main_prog,
                             dist_context=dist_context)
681 682 683 684 685
        else:
            assert mode, "Please set the 'mode' you want to save."
            feed_vars = self._feed_vars[mode]['inputs']
            fetch_vars = self._fetch_vars[mode]['outputs']
            dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
686 687 688 689 690
            self._saver.save_inference_model(path,
                                             feed_vars,
                                             fetch_vars,
                                             self._executor,
                                             program=dist_main_prog)
691

692 693 694 695
    def load(self, path, strict=True, load_optimizer=True, mode=None):
        if not mode:
            mode = self.mode
        assert mode, "Please set the 'mode' you want to load."
696

697 698 699 700
        dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        self._saver.load(path, dist_main_prog, dist_context, strict,
                         load_optimizer)
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728

    @property
    def mode(self):
        return self._mode

    @mode.setter
    def mode(self, mode):
        self._mode = mode

    @property
    def main_program(self):
        return self._dist_main_progs[self.mode][self._cur_rank]

    @property
    def startup_program(self):
        return self._dist_startup_progs[self.mode][self._cur_rank]

    @property
    def dist_context(self):
        return self._dist_contexts[self.mode]

    @property
    def serial_main_program(self):
        return self._serial_main_progs[self.mode]

    @property
    def serial_startup_program(self):
        return self._serial_startup_progs[self.mode]
729 730 731 732

    @property
    def fetch_vars(self):
        return self._fetch_vars[self.mode]