activation.py 38.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16 17 18 19 20 21 22
from ...fluid.layers import brelu  #DEFINE_ALIAS
from ...fluid.layers import erf  #DEFINE_ALIAS
from ...fluid.layers import hard_sigmoid  #DEFINE_ALIAS
from ...fluid.layers import hard_swish  #DEFINE_ALIAS
from ...fluid.layers import maxout  #DEFINE_ALIAS
from ...fluid.layers import soft_relu  #DEFINE_ALIAS
from ...fluid.layers import swish  #DEFINE_ALIAS
23
from ...fluid.layers import sigmoid  #DEFINE_ALIAS
24
from ...fluid.layers import thresholded_relu  #DEFINE_ALIAS
W
WangXi 已提交
25
from ...tensor.math import tanh  #DEFINE_ALIAS
26

27
__all__ = [
28 29 30 31
    'brelu',
    'elu',
    'erf',
    'gelu',
32
    'hardshrink',
33
    'hardtanh',
34 35
    'hard_sigmoid',
    'hard_swish',
36
    'hsigmoid',
37 38 39
    'leaky_relu',
    'logsigmoid',
    'maxout',
40
    'prelu',
41
    'relu',
42 43 44 45 46 47 48
    'relu6',
    'selu',
    'soft_relu',
    'softmax',
    'softplus',
    'softshrink',
    'softsign',
49
    'sigmoid',
50
    'swish',
W
WangXi 已提交
51
    'tanh',
52
    'tanhshrink',
53
    'thresholded_relu',
54
    'log_softmax',
55
]
56

57 58 59 60
import warnings
from ...fluid.layer_helper import LayerHelper
from ...fluid.framework import in_dygraph_mode, convert_np_dtype_to_dtype_
from ...fluid import core
61
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
62
import paddle
63

64

65 66 67 68
def elu(x, alpha=1.0, name=None):
    """
    elu activation.

69
    .. math::
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

        elu(x) = max(0, x) + min(0, \\alpha * (e^{x}-1))

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python

85 86 87
            import paddle
            import paddle.nn.functional as F
            import numpy as np
88

89
            paddle.disable_static()
90

91 92 93 94
            x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
            out = F.elu(x, alpha=0.2) 
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    """

    if in_dygraph_mode():
        return core.ops.elu(x, 'alpha', alpha)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


def gelu(x, approximate=False, name=None):
    """
    gelu activation.

    if approximate is True
116 117 118

    .. math::

119
        gelu(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))
120

121
    else
122 123 124

    .. math::

125 126 127 128 129 130 131 132 133 134 135 136 137 138
        gelu(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python

139 140 141
            import paddle
            import paddle.nn.functional as F
            import numpy as np
142

143
            paddle.disable_static()
144

145 146 147
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
            out1 = F.gelu(x) # [-0.158655 0.345731 0.841345 1.39979]
            out2 = F.gelu(x, True) # [-0.158808 0.345714 0.841192 1.39957]
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    """

    if in_dygraph_mode():
        return core.ops.gelu(x, 'approximate', approximate)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='gelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'approximate': approximate})
    return out


164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
def hardshrink(x, threshold=0.5, name=None):
    """
    hard shrinkage activation

    .. math::

        hardshrink(x)=
            \left\{
            \begin{aligned}
            &x, & & if \ x > threshold \\
            &x, & & if \ x < -threshold \\
            &0, & & if \ others
            \end{aligned}
            \right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

191 192 193
            import paddle
            import paddle.nn.functional as F
            import numpy as np
194

195
            paddle.disable_static()
196

197 198
            x = paddle.to_tensor(np.array([-1, 0.3, 2.5]))
            out = F.hardshrink(x) # [-1., 0., 2.5]
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

    """
    if in_dygraph_mode():
        return core.ops.hard_shrink(x, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_shrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


216 217 218 219 220 221 222 223 224 225 226 227
def hardtanh(x, min=-1.0, max=1.0, name=None):
    """
    hardtanh activation

    .. math::

        hardtanh(x)= \\begin{cases}
                        max, \\text{if } x > max \\\\
                        min, \\text{if } x < min \\\\
                        x,  \\text{otherwise}
                      \\end{cases}

228
    Parameters:
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            paddle.disable_static()

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

    if in_dygraph_mode():
        return core.ops.brelu(x, 't_min', min, 't_max', max)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardtanh')

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': min,
               't_max': max})
    return out


268 269 270 271 272 273 274 275 276
def hsigmoid(input,
             label,
             weight,
             bias,
             num_classes,
             path_table=None,
             path_code=None,
             is_sparse=False):
    """
H
hong 已提交
277 278
	:alias_main: paddle.nn.functional.hsigmoid
	:alias: paddle.nn.functional.hsigmoid,paddle.nn.functional.activation.hsigmoid
S
swtkiwi 已提交
279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Variable): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 and float64.
        label (Variable): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        weight (Variable): A tensor with shape (num_classes - 1, D) if not using custom tree(path_code and path_table is None), or (num_classes, D) if using custom tree.
        bias (Variable): A tensor with shape (num_classes - 1, 1) if not using custom tree(path_code and path_table is None), or (num_classes, 1) if using custom tree.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        path_table (Variable, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. Default: None.
        path_code (Variable, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. Default: None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
            gradient of W and input will be sparse. Default: False.

    Returns:
        Variable: A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as :attr:`input`.

    Examples:
        .. code-block:: python

            from paddle import fluid, nn
            import paddle.fluid.dygraph as dg
            import paddle.nn.functional as F
            import numpy as np

            main = fluid.Program()
            start = fluid.Program()
            feature_size = 6
            num_classes = 8
            with fluid.unique_name.guard():
                with fluid.program_guard(main, start):
                    x = fluid.data("input", [-1, feature_size],
                                  dtype="float32")
                    label = fluid.data("labels", [-1, 1], dtype="int64")
                    w = fluid.data("weight", (num_classes -1, feature_size), dtype="float32")
                    b = fluid.data("bias", (num_classes -1, ), dtype="float32")
                    y = F.hsigmoid(x, label, w, b, num_classes)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(start)
            feed_dict = {
                "input": np.random.randn(4, feature_size).astype(np.float32),
                "labels": np.random.randint(0, num_classes, (4, 1)).astype(np.int64),
                "weight": np.random.randn(num_classes - 1, feature_size).astype(np.float32),
                "bias": np.random.randn(num_classes - 1, ).astype(np.float32),
            }
            y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
            print(y_np.shape)

          # (4, 1)
    """

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
        "remote_prefetch": is_sparse
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
        "Label": label
    }

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()

    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

    helper.append_op(
        type="hierarchical_sigmoid",
        inputs=inputs,
        outputs=outputs,
        attrs=attrs)
    return out
388 389


390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
def leaky_relu(x, negative_slope=0.01, name=None):
    """
    leaky_relu activation

    .. math:
        leaky_relu(x)=
            \left\{
            \begin{aligned}
            &x, & & if \ x >= 0 \\
            &negative\_slope * x, & & otherwise \\
            \end{aligned}
            \right. \\

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            paddle.disable_static()

Z
zhupengyang 已提交
422
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
            out = F.leaky_relu(x) # [-0.02, 0., 1.]

    """
    if in_dygraph_mode():
        return core.ops.leaky_relu(x, 'alpha', negative_slope)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': negative_slope})
    return out


441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
def prelu(x, weight, name=None):
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            paddle.disable_static()

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
469 470 471 472 473
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
                               [ 6.0,  7.0,  8.0,  9.0]]]], 'float32')
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
            x = paddle.to_tensor(data)
            w = paddle.to_tensor(np.array([0.25]).astype('float32'))
            out = F.prelu(x, w)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
    check_variable_and_dtype(weight, 'weight',
                             ['float16', 'float32', 'float64'], 'prelu')

    helper = LayerHelper('prelu', **locals())
    assert len(weight.shape
               ) == 1, "The dim count of weight shape should be 1 in prelu()."

    # NOTE(): The input of this API should be ``N,C,...`` format, 
    # which means x.shape[0] is batch_size and x.shape[0] is channel.
    mode = 'all'
    if weight.shape[0] > 1:
        assert len(
            x.shape
        ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
        assert weight.shape[0] == x.shape[
            1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
        mode = 'channel'

    if in_dygraph_mode():
        return core.ops.prelu(x, weight, 'mode', mode)

    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                "Alpha": weight},
        outputs={"Out": out},
        attrs={"mode": mode})
    return out


516
def relu(x, name=None):
517
    """
518
    relu activation.
519

520
    .. math::
521 522 523 524

        out = max(x, 0)

    Parameters:
525 526 527
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
528 529

    Returns:
530
        A Tensor with the same data type and shape as ``x`` .
531 532 533 534

    Examples:
        .. code-block:: python

535 536 537
            import paddle
            import paddle.nn.functional as F
            import numpy as np
538

539
            paddle.disable_static()
540

541 542
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            out = F.relu(x) # [0., 0., 1.]
543 544 545
    """

    if in_dygraph_mode():
546
        return core.ops.relu(x)
547

548
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
549
    helper = LayerHelper('relu', **locals())
550 551 552 553 554 555 556 557 558
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


def logsigmoid(x, name=None):
    """
    logsigmoid activation.

559
    .. math::
560

561
        logsigmoid(x) = log \\frac{1}{1 + e^{-x}}
562 563 564 565 566 567 568 569 570 571 572 573
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python

574 575 576
            import paddle
            import paddle.nn.functional as F
            import numpy as np
577

578
            paddle.disable_static()
579

580 581
            x = paddle.to_tensor(np.array([1.0, 2.0, 3.0, 4.0]))
            out = F.logsigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
582 583 584 585 586 587 588 589 590 591 592
    """

    if in_dygraph_mode():
        return core.ops.logsigmoid(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'logsigmoid')
    helper = LayerHelper("logsigmoid", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
593 594


595 596 597 598 599 600
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

601
        relu6(x) = min(max(0,x), 6)
602

603
    Parameters:
604 605 606 607 608 609 610 611 612 613
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

614 615 616
            import paddle
            import paddle.nn.functional as F
            import numpy as np
617

618
            paddle.disable_static()
619

620 621
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            out = F.relu6(x) # [0, 0.3, 6]
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    """
    threshold = 6.0
    if in_dygraph_mode():
        return core.ops.relu6(x, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


def selu(x,
         scale=1.0507009873554804934193349852946,
         alpha=1.6732632423543772848170429916717,
         name=None):
    """
    selu activation

    .. math::

647
        selu(x) = scale * (max(0,x) + min(0, alpha * (e^{x} - 1)))
648

649
    Parameters:
650 651 652 653 654 655 656 657 658 659 660 661
        x (Tensor): The input Tensor with data type float32, float64.
        scale (float, optional): The value of scale for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha for selu. Default is 1.6732632423543772848170429916717
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

662 663 664
            import paddle
            import paddle.nn.functional as F
            import numpy as np
665

666
            paddle.disable_static()
667

668
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
669
            out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]]
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
    """
    if in_dygraph_mode():
        return core.ops.selu(x, 'scale', scale, 'alpha', alpha)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='selu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale': scale,
               'alpha': alpha})
    return out


686
def softmax(x, axis=-1, dtype=None, name=None):
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
    """
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

713
        softmax[i, j] = \\frac{\\exp(x[i, j])}{\\sum_j(exp(x[i, j])}
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

762 763 764 765 766 767 768 769 770 771 772 773
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
            to ``dtype`` before the operation is performed. This is useful for 
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
774 775 776 777
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
778 779
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
780 781 782 783

    Examples:
        .. code-block:: python

784 785 786
            import paddle
            import paddle.nn.functional as F
            import numpy as np
787

788
            paddle.disable_static()
789

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
807
    """
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True if axis is -1 else False

    if in_dygraph_mode():
        outs_cast = x if dtype is None \
            else core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return core.ops.softmax(outs_cast, 'axis', axis, 'use_cudnn', use_cudnn)

    if dtype is None:
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'softmax',
                    'If dtype is not None, it only support float32 or float64.')

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': outs_cast},
            attrs={'in_dtype': x.dtype,
                   'out_dtype': dtype})

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
    helper.append_op(
        type='softmax',
        inputs={'X': outs_cast},
        outputs={'Out': outs_softmax},
        attrs={'axis': axis,
               'use_cudnn': use_cudnn})

    return outs_softmax
845 846


847 848 849 850 851 852
def softplus(x, beta=1, threshold=20, name=None):
    """
    softplus activation

    .. math::

853 854
        softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\
        \\text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
855

856
    Parameters:
857 858 859 860 861 862 863 864 865 866 867 868
        x (Tensor): The input Tensor with data type float32, float64.
        beta (float, optional): The value of beta for softplus. Default is 1
        threshold (float, optional): The value of threshold for softplus. Default is 20
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

869 870 871
            import paddle
            import paddle.nn.functional as F
            import numpy as np
872

873
            paddle.disable_static()
874

875 876
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
    """
    if in_dygraph_mode():
        return core.ops.softplus(x, 'beta', beta, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softplus')
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softplus',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'beta': beta,
               'threshold': threshold})
    return out


def softshrink(x, threshold=0.5, name=None):
    """
    softshrink activation

    .. math::

900 901 902 903 904
        softshrink(x)= \\begin{cases}
                        x - threshold, \\text{if } x > threshold \\\\
                        x + threshold, \\text{if } x < -threshold \\\\
                        0,  \\text{otherwise}
                      \\end{cases}
905

906
    Parameters:
907 908 909 910 911 912 913 914 915 916 917
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

918 919 920
            import paddle
            import paddle.nn.functional as F
            import numpy as np
921

922
            paddle.disable_static()
923

924 925
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
926
    """
927 928 929 930 931
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
                threshold))

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
    if in_dygraph_mode():
        return core.ops.softshrink(x, 'lambda', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softshrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'lambda': threshold})
    return out


def softsign(x, name=None):
    """
    softsign activation

    .. math::

953
        softsign(x) = \\frac{x}{1 + |x|}
954

955
    Parameters:
956 957 958 959 960 961 962 963 964 965
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

966 967 968
            import paddle
            import paddle.nn.functional as F
            import numpy as np
969

970
            paddle.disable_static()
971

972 973
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
    """
    if in_dygraph_mode():
        return core.ops.softsign(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softsign')
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

992
        tanhshrink(x) = x - tanh(x)
993 994 995 996 997 998 999 1000 1001 1002 1003 1004

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1005 1006 1007
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1008

1009
            paddle.disable_static()
1010

1011 1012
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    """
    if in_dygraph_mode():
        return core.ops.tanh_shrink(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'tanhshrink')
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1025
def log_softmax(x, axis=-1, dtype=None, name=None):
1026
    """
1027 1028
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1029 1030 1031 1032

    .. math::

        Out[i, j] = log(softmax(x)) 
1033
                  = log(\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})
1034 1035

    Parameters:
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
            to ``dtype`` before the operation is performed. This is useful for 
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1049 1050
 
    Returns:
1051 1052
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1053 1054 1055 1056

    Examples:
        .. code-block:: python

1057 1058 1059
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1060

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
            paddle.disable_static()

            x = np.array([[[-2.0, 3.0, -4.0, 5.0],
                            [3.0, -4.0, 5.0, -6.0],
                            [-7.0, -8.0, 8.0, 9.0]],
                            [[1.0, -2.0, -3.0, 4.0],
                            [-5.0, 6.0, 7.0, -8.0],
                            [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1081 1082 1083

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1084 1085

    if in_dygraph_mode():
1086 1087 1088
        if dtype is not None:
            x = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return core.ops.log_softmax(x, 'axis', axis)
1089

1090
    if dtype is None:
1091 1092 1093 1094 1095
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
                    'If dtype is not None, it only support float32 or float64.')
1096

1097
    helper = LayerHelper("log_softmax", **locals())
1098
    out_cast = x
1099
    if dtype is not None:
1100
        out_cast = helper.create_variable_for_type_inference(dtype)
1101 1102
        helper.append_op(
            type='cast',
1103 1104 1105
            inputs={'X': x},
            outputs={'Out': out_cast},
            attrs={'in_dtype': x.dtype,
1106 1107
                   'out_dtype': dtype})

1108
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1109
    helper.append_op(
1110 1111 1112 1113
        type='log_softmax',
        inputs={'X': out_cast},
        outputs={'Out': out},
        attrs={'axis': axis})
1114

1115
    return out