randint_op.cc 7.2 KB
Newer Older
S
silingtong123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/uniform_random_op.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace operators {

template <typename T>
class CPURandintKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    std::vector<int64_t> new_shape;
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensorList");
    if (list_new_shape_tensor.size() > 0 || ctx.HasInput("ShapeTensor")) {
      if (ctx.HasInput("ShapeTensor")) {
        auto* shape_tensor = ctx.Input<framework::Tensor>("ShapeTensor");
        new_shape = GetNewDataFromShapeTensor(shape_tensor);
      } else if (list_new_shape_tensor.size() > 0) {
        new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
      }
    }

    auto* out = ctx.Output<framework::LoDTensor>("Out");
    if (!new_shape.empty()) out->Resize(framework::make_ddim(new_shape));
    T* data = out->mutable_data<T>(ctx.GetPlace());
    int64_t size = out->numel();
45 46 47 48 49 50 51 52 53
    unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::uniform_int_distribution<T> dist(ctx.Attr<int>("low"),
                                          ctx.Attr<int>("high") - 1);
    for (int64_t i = 0; i < size; ++i) data[i] = dist(engine);
S
silingtong123 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  }
};

class RandintOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::InvalidArgument("Output(Out) of RandintOp is null."));
    PADDLE_ENFORCE_LT(
        ctx->Attrs().Get<int>("low"), ctx->Attrs().Get<int>("high"),
        platform::errors::InvalidArgument("randint's low must less then high, "
                                          "but received: low = %d, high = %d.",
                                          ctx->Attrs().Get<int>("low"),
                                          ctx->Attrs().Get<int>("high")));

    if (ctx->HasInputs("ShapeTensorList")) {
      // top prority shape
      auto inputs_name = ctx->Inputs("ShapeTensorList");
      PADDLE_ENFORCE_GT(
          inputs_name.size(), 0,
          platform::errors::InvalidArgument(
              "Input(ShapeTensorList)'size of Op(randint) can't be zero."
              "Please check the Attr(shape)'s size of"
              "Op(fluid.layers.randint).)"));
      auto out_dims = std::vector<int>(inputs_name.size(), -1);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims));

      return;
    }

    auto& shape = ctx->Attrs().Get<std::vector<int64_t>>("shape");
    if (ctx->HasInput("ShapeTensor") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("ShapeTensor");
      PADDLE_ENFORCE_EQ(shape_dims.size(), 1,
                        platform::errors::InvalidArgument(
                            "ShapeError: Input(ShapeTensor)' dimension size of "
                            "Op(randint) must be 1."
                            "But received ShapeTensor's dimensions = %d.",
                            shape_dims.size()));
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int64_t>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      return;
    }

    PADDLE_ENFORCE_EQ(shape.empty(), false,
                      platform::errors::InvalidArgument(
                          "if there is no Input(ShapeTensorList) and no "
                          "Input(ShapeTensor),the "
                          "attr(shape) information must "
                          "be set by Attr(shape)."));

    std::vector<int64_t> tensor_shape;
    tensor_shape.reserve(shape.size());
    for (auto dim : shape) {
      tensor_shape.push_back(static_cast<int64_t>(dim));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(tensor_shape));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
        ctx.GetPlace());
  }
};

class RandintOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("ShapeTensor",
             "(Tensor<int64_t> or Tensor<int32_t>, optional) . If provided, "
             "randint"
             "according to "
             "this given shape. It means that it has a higher priority than "
             "Attr(shape) but a lower priority than Input(ShapeTensor).")
        .AsDispensable();
    AddInput("ShapeTensorList",
             "(vector<Tensor<int64_t>> or vector<Tensor<int32_t>>, optional). "
             "If provided, randint use this. The shape of the tensor "
             "must be [1], it has the highest priority comparing with "
             "Input(ShapeTensor) and attr(shape).")
        .AsDuplicable()
        .AsDispensable();
    AddOutput("Out", "The output tensor of randint op");
    AddComment(R"DOC(
This operator initializes a tensor with random integers sampled from a
uniform distribution. The random result is in set [low, high).
)DOC");
    AddAttr<std::vector<int64_t>>("shape", "The shape of the output tensor.")
        .SetDefault({});
    AddAttr<int>("low",
                 "The lower bound on the range of random values to generate.");
    AddAttr<int>("high",
                 "The upper bound on the range of random values to generate.");
    AddAttr<int>("dtype", "Output tensor data type. [Default INT64].")
        .SetDefault(framework::proto::VarType::INT64);
160 161 162 163 164 165
    AddAttr<int>("seed",
                 "Random seed used for generating samples. "
                 "0 means use a seed generated by the system."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time. [default 0].")
        .SetDefault(0);
S
silingtong123 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(
    randint, ops::RandintOp, ops::RandintOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>)

REGISTER_OP_CPU_KERNEL(randint, ops::CPURandintKernel<int>,
                       ops::CPURandintKernel<int64_t>)