MultiBoxLossLayer.h 3.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* copyright (c) 2016 paddlepaddle authors. all rights reserve.

licensed under the apache license, version 2.0 (the "license");
you may not use this file except in compliance with the license.
you may obtain a copy of the license at

    http://www.apache.org/licenses/license-2.0

unless required by applicable law or agreed to in writing, software
distributed under the license is distributed on an "as is" basis,
without warranties or conditions of any kind, either express or implied.
see the license for the specific language governing permissions and
limitations under the license. */

#pragma once

#include <vector>
#include "CostLayer.h"
#include "DataLayer.h"
#include "DetectionUtil.h"
#include "Layer.h"

using std::vector;
using std::pair;

namespace paddle {

/**
 * The multibox loss layer for a SSD detection task.
 * The loss is composed by the location loss and the confidence loss.
 * The location loss is a smooth L1 loss and the confidence loss is
 * a softmax loss.
Y
yangyaming 已提交
33
 * - Input: This layer needs four input layers: The first input layer
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 *          is the priorbox layer and the second layer is a label layer.
 *          The rest two input layers are convolution layers for generating
 *          bbox location offset and the classification confidence.
 * - Output: The Single Shot Multibox Detection loss value.
 * Reference:
 *    Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
 *    Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox Detector
 */

class MultiBoxLossLayer : public CostLayer {
public:
  explicit MultiBoxLossLayer(const LayerConfig& config) : CostLayer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forward(PassType passType);

  void backward(const UpdateCallback& callback = nullptr);

  void forwardImp(Matrix& output, Argument& label, Matrix& cost) {}

  void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad) {}

protected:
  inline LayerPtr getPriorBoxLayer() { return inputLayers_[0]; }
  inline LayerPtr getLabelLayer() { return inputLayers_[1]; }
  inline LayerPtr getLocInputLayer(size_t index) {
    return inputLayers_[2 + index];
  }
  inline LayerPtr getConfInputLayer(size_t index) {
    return inputLayers_[2 + inputNum_ + index];
  }

protected:
  size_t numClasses_;
  real overlapThreshold_;
  real negPosRatio_;
  real negOverlap_;
  size_t inputNum_;
  size_t backgroundId_;

  real locLoss_;
  real confLoss_;

  size_t numPriors_;
  size_t numMatches_;
  size_t numNegs_;
  size_t numConf_;
  size_t locSizeSum_;
  size_t confSizeSum_;

  vector<vector<int>> allMatchIndices_;
  vector<vector<int>> allNegIndices_;
  MatrixPtr locGTData_;
  IVectorPtr confGTData_;

  MatrixPtr locBuffer_;
  MatrixPtr confBuffer_;
  MatrixPtr locDiff_;
  MatrixPtr confProb_;

  MatrixPtr labelCpuValue_;
  MatrixPtr priorCpuValue_;
  MatrixPtr locCpuBuffer_;
  MatrixPtr confCpuBuffer_;
  MatrixPtr locTmpBuffer_;
  MatrixPtr confTmpBuffer_;
};

}  // namespace paddle