api_base.py 41.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
16
import collections
17

18
PREFIX_TENSOR_NAME = 'input_'
19 20 21 22
PREFIX_META_TENSOR_NAME = 'meta_'


class BaseAPI(object):
23

24 25 26 27 28 29 30 31 32 33 34 35
    def __init__(self, api_item_yaml):
        self.api = self.get_api_name(api_item_yaml)

        # inputs:
        #     names : [], list of input names
        #     input_info : {input_name : type}
        # attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}
        # outputs:
        #     names : [], list of output names
        #     types : [], list of output types
36
        #     out_size_expr : [], expression for getting size of vector<Tensor>
37
        self.inputs, self.attrs, self.outputs, self.optional_vars = self.parse_args(
38 39 40 41 42 43 44
            self.api, api_item_yaml)

        self.is_base_api = True
        if 'invoke' in api_item_yaml:
            self.is_base_api = False
            self.invoke = api_item_yaml['invoke']
        else:
45
            if 'infer_meta' in api_item_yaml:
46 47
                self.infer_meta = self.parse_infer_meta(
                    api_item_yaml['infer_meta'])
48 49
            self.kernel = self.parse_kernel(api_item_yaml['kernel'])
            self.data_transform = self.parse_data_transform(api_item_yaml)
50
            self.inplace_map, self.view_map = {}, {}
51 52 53 54

    def get_api_name(self, api_item_yaml):
        return api_item_yaml['api']

55 56 57
    def get_api_func_name(self):
        return self.api

58 59 60 61
    def get_input_tensor_args(self, inplace_flag=False):
        input_args = []
        inplace_type_map = {
            "const Tensor&": "Tensor&",
62
            "const paddle::optional<Tensor>&": "paddle::optional<Tensor>&",
63 64 65 66 67
            "const std::vector<Tensor>&": "std::vector<Tensor>&"
        }
        for name in self.inputs['names']:
            name = name.split('@')[0]
            if inplace_flag and name in self.inplace_map.values():
68 69 70
                input_args.append(
                    inplace_type_map[self.inputs['input_info'][name]] + ' ' +
                    name)
71 72 73 74 75 76 77 78 79 80 81 82
            else:
                input_args.append(self.inputs['input_info'][name] + ' ' + name)
        return input_args

    def get_declare_args(self, inplace_flag=False):
        declare_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            default_value = ''
            if self.attrs['attr_info'][name][1] is not None:
                default_value = ' = ' + self.attrs['attr_info'][name][1]
            declare_args.append(self.attrs['attr_info'][name][0] + ' ' + name +
                                default_value)
83

84 85 86 87 88 89 90 91
        return ", ".join(declare_args)

    def get_define_args(self, inplace_flag=False):
        define_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            define_args.append(self.attrs['attr_info'][name][0] + ' ' + name)

        return ", ".join(define_args)
92

93
    def parse_args(self, api_name, api_item_yaml):
94 95 96 97 98
        optional_vars = []
        if 'optional' in api_item_yaml:
            optional_vars = [
                item.strip() for item in api_item_yaml['optional'].split(',')
            ]
99 100 101
        inputs, attrs = self.parse_input_and_attr(api_name,
                                                  api_item_yaml['args'],
                                                  optional_vars)
102
        output_type_list, output_names, out_size_expr = self.parse_output(
103 104 105 106
            api_name, api_item_yaml['output'])
        return inputs, attrs, {
            'names': output_names,
            'types': output_type_list,
107 108
            'out_size_expr': out_size_expr
        }, optional_vars
109

110
    def parse_input_and_attr(self, api_name, args_config, optional_vars=[]):
111 112 113 114 115 116 117
        inputs = {'names': [], 'input_info': {}}
        attrs = {'names': [], 'attr_info': {}}
        args_str = args_config.strip()
        assert args_str.startswith('(') and args_str.endswith(')'), \
            f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml."
        args_str = args_str[1:-1]
        args_list = args_str.split(',')
Z
zyfncg 已提交
118 119 120 121
        input_types_map = {
            'Tensor': 'const Tensor&',
            'Tensor[]': 'const std::vector<Tensor>&'
        }
122
        attr_types_map = {
123
            'IntArray': 'const IntArray&',
124
            'Scalar': 'const Scalar&',
125 126 127 128
            'Scalar(int)': 'const Scalar&',
            'Scalar(int64_t)': 'const Scalar&',
            'Scalar(float)': 'const Scalar&',
            'Scalar(dobule)': 'const Scalar&',
129
            'Scalar[]': 'const std::vector<phi::Scalar>&',
130
            'int': 'int',
131 132
            'int32_t': 'int32_t',
            'int64_t': 'int64_t',
133 134 135
            'long': 'long',
            'size_t': 'size_t',
            'float': 'float',
136
            'float[]': 'const std::vector<float>&',
137 138
            'double': 'double',
            'bool': 'bool',
139
            'str': 'const std::string&',
140
            'str[]': 'const std::vector<std::string>&',
141
            'Place': 'const Place&',
142 143
            'DataLayout': 'DataLayout',
            'DataType': 'DataType',
144
            'int64_t[]': 'const std::vector<int64_t>&',
Z
zhiboniu 已提交
145
            'int[]': 'const std::vector<int>&',
146 147
        }
        optional_types_trans = {
148
            'Tensor': 'const paddle::optional<Tensor>&',
149 150
            'Tensor[]': 'const paddle::optional<std::vector<Tensor>>&',
            'int': 'paddle::optional<int>',
151 152
            'int32_t': 'paddle::optional<int32_t>',
            'int64_t': 'paddle::optional<int64_t>',
153 154 155
            'float': 'paddle::optional<float>',
            'double': 'paddle::optional<double>',
            'bool': 'paddle::optional<bool>',
156
            'Place': 'paddle::optional<const Place&>',
157
            'DataLayout': 'paddle::optional<DataLayout>',
158
            'DataType': 'paddle::optional<DataType>'
159 160
        }

161 162
        for item in args_list:
            item = item.strip()
Z
zyfncg 已提交
163
            type_and_name = item.split(' ')
164 165
            # match the input tensor
            has_input = False
Z
zyfncg 已提交
166 167 168
            for in_type_symbol, in_type in input_types_map.items():
                if type_and_name[0] == in_type_symbol:
                    input_name = type_and_name[1].strip()
169 170 171 172 173
                    assert len(input_name) > 0, \
                        f"The input tensor name should not be empty. Please check the args of {api_name} in yaml."
                    assert len(attrs['names']) == 0, \
                        f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml"

174 175 176
                    if input_name in optional_vars:
                        in_type = optional_types_trans[in_type_symbol]

177 178 179 180 181 182 183 184
                    inputs['names'].append(input_name)
                    inputs['input_info'][input_name] = in_type
                    has_input = True
                    break
            if has_input:
                continue

            # match the attribute
Z
zyfncg 已提交
185 186 187
            for attr_type_symbol, attr_type in attr_types_map.items():
                if type_and_name[0] == attr_type_symbol:
                    attr_name = item[len(attr_type_symbol):].strip()
188 189 190 191 192 193 194 195
                    assert len(attr_name) > 0, \
                        f"The attribute name should not be empty. Please check the args of {api_name} in yaml."
                    default_value = None
                    if '=' in attr_name:
                        attr_infos = attr_name.split('=')
                        attr_name = attr_infos[0].strip()
                        default_value = attr_infos[1].strip()

196 197 198
                    if attr_name in optional_vars:
                        attr_type = optional_types_trans[attr_type_symbol]

199 200 201 202 203
                    default_value_str = "" if default_value is None else '=' + default_value
                    attrs['names'].append(attr_name)
                    attrs['attr_info'][attr_name] = (attr_type, default_value)
                    break

204
        return inputs, attrs
205 206

    def parse_output(self, api_name, output_config):
207

208
        def parse_output_item(output_item):
Z
zyfncg 已提交
209 210 211 212
            output_type_map = {
                'Tensor': 'Tensor',
                'Tensor[]': 'std::vector<Tensor>'
            }
213 214 215 216 217 218 219 220 221 222 223 224 225 226
            result = re.search(
                r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
                output_item)
            assert result is not None, f"{api_name} : the output config parse error."
            out_type = result.group('out_type')
            assert out_type in output_type_map, \
                f"{api_name} : Output type error: the output type only support Tensor and Tensor[], \
                  but now is {out_type}."

            out_name = 'out' if result.group('name') is None else result.group(
                'name')[1:-1]
            out_size_expr = None if result.group(
                'expr') is None else result.group('expr')[1:-1]
            return output_type_map[out_type], out_name, out_size_expr
227 228 229 230

        temp_list = output_config.split(',')

        if len(temp_list) == 1:
231
            out_type, out_name, size_expr = parse_output_item(temp_list[0])
232
            return [out_type], [out_name], [size_expr]
233 234 235
        else:
            out_type_list = []
            out_name_list = []
236
            out_size_expr_list = []
237
            for output_item in temp_list:
238
                out_type, out_name, size_expr = parse_output_item(output_item)
239 240
                out_type_list.append(out_type)
                out_name_list.append(out_name)
241
                out_size_expr_list.append(size_expr)
242

243
            return out_type_list, out_name_list, out_size_expr_list
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258
    def parse_infer_meta(self, infer_meta_config):
        infer_meta = infer_meta_config
        if 'param' not in infer_meta_config:
            infer_meta['param'] = None

        return infer_meta

    def parse_kernel(self, kernel_config):
        # kernel :
        #    func : [], Kernel functions (example: scale, scale_sr)
        #    param : [], Input params of kernel
        #    backend : str, the names of param to choose the kernel backend, default is None
        #    layout : str, the names of param to choose the kernel layout, default is None
        #    data_type : str, the names of param to choose the kernel data_type, default is None
259
        #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
260 261 262 263 264
        kernel = {
            'func': [],
            'param': None,
            'backend': None,
            'layout': None,
Z
zyfncg 已提交
265
            'data_type': None,
266 267
            'use_gpudnn': 'false',
            'dispatch': {}
268 269 270 271 272 273 274 275 276
        }
        if 'backend' in kernel_config and len(kernel_config['backend']) > 0:
            kernel['backend'] = kernel_config['backend']
        if 'layout' in kernel_config and len(kernel_config['layout']) > 0:
            kernel['layout'] = kernel_config['layout']
        if 'data_type' in kernel_config and len(kernel_config['data_type']) > 0:
            kernel['data_type'] = kernel_config['data_type']
        if 'param' in kernel_config:
            kernel['param'] = kernel_config['param']
277 278 279 280
        if 'use_gpudnn' in kernel_config:
            kernel['use_gpudnn'] = kernel_config['use_gpudnn']
            if isinstance(kernel['use_gpudnn'], bool):
                kernel['use_gpudnn'] = str(kernel['use_gpudnn']).lower()
281 282 283 284 285 286 287 288 289
        kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
            kernel_config['func'])

        def parse_kernel_in_out_type(in_out_str):
            if len(in_out_str) == 0:
                return None
            tmp_in_out_list = in_out_str[1:-1].split('->')
            inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
            outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]
290 291 292 293 294 295 296 297 298 299 300

            # check the tensor type
            for item in inputs:
                assert item in [
                    'dense', 'selected_rows', 'sparse_coo', 'sparse_csr'
                ], f"{self.api} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
            for item in outputs:
                assert item in [
                    'dense', 'selected_rows', 'sparse_coo', 'sparse_csr'
                ], f"{self.api} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."

301 302 303 304 305 306
            return (inputs, outputs)

        for func_item in kernel_funcs:
            kernel['func'].append(func_item[0])
            kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
                func_item[1])
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

        return kernel

    def parse_data_transform(self, api_item_yaml):
        data_transform = {'skip_transform': [], 'support_trans_dtype': []}
        if 'data_transform' in api_item_yaml:
            if 'skip_transform' in api_item_yaml['data_transform']:
                data_transform['skip_transform'] = api_item_yaml[
                    'data_transform']['skip_transform']
            if 'support_trans_dtype' in api_item_yaml['data_transform']:
                data_transform['support_trans_dtype'] = api_item_yaml[
                    'data_transform']['support_trans_dtype']

        return data_transform

322
    # Override by child class
323
    def get_return_type(self, inplace_flag=False):
324 325 326
        return None

    def gene_api_declaration(self):
327 328 329 330 331
        api_declaration = ""
        api_func_name = self.get_api_func_name()
        if api_func_name[-1] != '_':
            api_declaration = f"""
PADDLE_API {self.get_return_type()} {api_func_name}({self.get_declare_args()});
332 333
"""

334 335 336
        if self.is_base_api and len(self.inplace_map) > 0:
            if api_func_name[-1] != '_':
                api_func_name += '_'
337
            api_declaration = api_declaration + f"""
338
PADDLE_API {self.get_return_type(inplace_flag=True)} {api_func_name}({self.get_declare_args(inplace_flag=True)});
339 340 341 342
"""

        return api_declaration

343 344 345 346 347 348 349 350 351
    # Backward API Override this method
    def gene_kernel_backend_select(self):
        backend_select_code = ""
        if self.kernel['backend'] is not None:
            if '>' in self.kernel['backend']:
                vars_list = self.kernel['backend'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
352
                assert (vars_list[0].strip() in self.attrs['names']) and (self.attrs['attr_info'][vars_list[0].strip()][0] == 'const Place&'), \
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
                    f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type."
                backend_select_code = f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                backend_args = [
                    ele.strip() for ele in self.kernel['backend'].split(',')
                ]
                backend_select_code = f"""
  kernel_backend = ParseBackend({", ".join(backend_args)});
"""

        return backend_select_code

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    def gene_kernel_select(self) -> str:
        api = self.api
        input_names = self.inputs['names']
        attrs = self.attrs
        kernel = self.kernel

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
384
            if attrs['attr_info'][attr_name][0] == 'const Place&':
385
                assert kernel['backend'] is not None, \
386
                    f"{api} api: When there is a parameter with 'Place' type in attributes, you must set backend of kernel manually."
387 388 389 390 391 392 393 394 395 396 397
                attr_backend_count = attr_backend_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataLayout':
                assert kernel['layout'] is not None, \
                    f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually."
                attr_layout_count = attr_layout_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataType':
                assert kernel['data_type'] is not None, \
                    f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually."
                attr_data_type_count = attr_data_type_count + 1

        # preprocess kernel configures
398
        kernel_select_code = self.gene_kernel_backend_select()
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

        if kernel['layout'] is not None:
            if '>' in kernel['layout']:
                vars_list = kernel['layout'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \
                    f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['layout'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayout({vars_list[0].strip()});
"""

        if kernel['data_type'] is not None:
            if '>' in kernel['data_type']:
                vars_list = kernel['data_type'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \
                    f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['data_type'].split(',')
                assert len(
                    vars_list
437
                ) == 1, f"{api} api: The number of params to set data_type only allows 1, but received {len(vars_list)}."
438 439 440 441 442
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataType({vars_list[0].strip()});
"""

        if len(input_names) == 0:
443
            assert attr_backend_count > 0 and attr_data_type_count > 0, \
444
                f"{api} api: When there is no input tensor, the args must have 'Place' and 'DataType'."
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
            kernel_select_code = kernel_select_code + f"""
  if (kernel_backend == Backend::UNDEFINED
        || kernel_layout == DataLayout::UNDEFINED
        || kernel_data_type == DataType::UNDEFINED ) {{
    auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
461
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
462 463 464 465 466 467 468 469 470 471 472 473 474
    if (kernel_backend == Backend::UNDEFINED) {{
      kernel_backend = kernel_key.backend();
    }}
    if (kernel_layout == DataLayout::UNDEFINED) {{
      kernel_layout = kernel_key.layout();
    }}
    if (kernel_data_type == DataType::UNDEFINED) {{
      kernel_data_type = kernel_key.dtype();
    }}
  }}"""

        return kernel_select_code

475
    def gene_infer_meta(self, kernel_output_names, code_indent) -> str:
476 477 478 479
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

480 481
        infer_meta_params = infer_meta['param'] if infer_meta[
            'param'] is not None else input_names + attr_names
482 483 484 485 486
        # generate meta tensors
        meta_tensor_code = ""
        param_code = ""
        for param in infer_meta_params:
            if param in input_names:
487 488 489 490 491
                if self.inputs['input_info'][param] == "const Tensor&":
                    param_code = param_code + "MakeMetaTensor(*" + PREFIX_TENSOR_NAME + param + "), "
                elif self.inputs['input_info'][
                        param] == "const std::vector<Tensor>&":
                    meta_tensor_code = meta_tensor_code + f"""
492
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
493
{code_indent}  std::vector<const phi::MetaTensor*> {param}_metas({param}_meta_vec.size());
494 495 496 497 498 499 500
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas[i] = &{param}_meta_vec[i];
{code_indent}  }}
"""

                    param_code = param_code + param + "_metas, "
                elif param in self.optional_vars:
501
                    param_code = param_code + "MakeMetaTensor(" + PREFIX_TENSOR_NAME + param + "), "
502
                else:
503 504 505
                    raise ValueError(
                        f"{self.api} : Param of infer_meta error : {self.inputs['input_info'][param]} type is not supported."
                    )
506 507 508 509 510 511 512 513 514
            elif param in attr_names:
                param_code = param_code + param + ", "
            elif isinstance(param, str):
                param_code = param_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                param_code = param_code + str(param).lower() + ", "
            else:
                param_code = param_code + str(param) + ", "

515 516 517 518 519 520
        for i, out_name in enumerate(kernel_output_names):
            if self.outputs['types'][i] == 'std::vector<Tensor>':
                meta_tensor_code = meta_tensor_code + f"""
{code_indent}  auto {out_name}_{PREFIX_META_TENSOR_NAME}vec = MakeMetaTensor({out_name});
{code_indent}  std::vector<phi::MetaTensor*> {out_name}_metas({out_name}_{PREFIX_META_TENSOR_NAME}vec.size());
{code_indent}  for (size_t i = 0; i < {out_name}_{PREFIX_META_TENSOR_NAME}vec.size(); ++i) {{
521
{code_indent}    {out_name}_metas[i] = {out_name}[i] ? &{out_name}_{PREFIX_META_TENSOR_NAME}vec[i] : nullptr;
522 523 524 525 526 527 528
{code_indent}  }}"""

                param_code = param_code + out_name + '_metas, '
            else:
                meta_tensor_code = meta_tensor_code + code_indent + "  phi::MetaTensor " + out_name.replace(
                    'kernel_',
                    PREFIX_META_TENSOR_NAME) + "(" + out_name + ");\n"
529 530 531 532
                if len(kernel_output_names) == 1:
                    param_code = param_code + f"&{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)}, "
                else:
                    param_code = param_code + f"{out_name} ? &{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)} : nullptr, "
533

534 535
        param_code = param_code[:-2]
        return f"""{meta_tensor_code}
536
{code_indent}  phi::{infer_meta['func']}({param_code});
537 538
"""

539 540
    def get_kernel_args(self, kernel_tensor_type=None, code_indent=''):
        dense_input_trans_map = {
541 542
            'const Tensor&':
            'const phi::DenseTensor&',
543
            'const std::vector<Tensor>&':
544
            'const std::vector<const phi::DenseTensor*>&',
H
hong 已提交
545 546
            'const paddle::optional<Tensor&>':
            'paddle::optional<const phi::DenseTensor&>',
547 548
            'const paddle::optional<Tensor>&':
            'const paddle::optional<phi::DenseTensor>&',
549 550
            'const paddle::optional<std::vector<Tensor>>&':
            'paddle::optional<const std::vector<phi::DenseTensor>&>'
551
        }
552
        dense_out_trans_map = {
553 554
            'Tensor': 'phi::DenseTensor*',
            'std::vector<Tensor>': 'std::vector<phi::DenseTensor*>&'
555
        }
556 557 558 559 560 561 562
        sr_input_trans_map = {
            'const Tensor&':
            'const phi::SelectedRows&',
            'const paddle::optional<Tensor>&':
            'const paddle::optional<phi::SelectedRows>&'
        }
        sr_out_trans_map = {'Tensor': 'phi::SelectedRows*'}
563 564 565 566 567 568 569 570 571 572
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
573
        input_name_tensor_map = collections.defaultdict(list)
574 575 576
        for i, input_name in enumerate(input_names):
            # set input code
            if input_name in kernel_param:
577 578 579 580 581 582 583 584 585 586
                # input is dense tensor
                if kernel_tensor_type is None or kernel_tensor_type[0][
                        kernel_param.index(input_name)] == 'dense':
                    trans_flag = "{}"
                    if input_name in self.data_transform['skip_transform']:
                        trans_flag = "{true}"
                    elif input_name in self.data_transform[
                            'support_trans_dtype']:
                        trans_flag = "{false, true}"
                    if input_name in self.optional_vars:
587 588
                        input_name_tensor_map[input_name].append(
                            (f"{PREFIX_TENSOR_NAME}{input_name}", False))
589
                        input_tensor_code = input_tensor_code + f"""
590
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});"""
591

592 593 594
                    else:
                        if self.inputs['input_info'][
                                input_name] == "const Tensor&":
595 596
                            input_name_tensor_map[input_name].append(
                                (f"{PREFIX_TENSOR_NAME}{input_name}", False))
597
                            input_tensor_code = input_tensor_code + f"""
598
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});"""
599

600 601
                        elif self.inputs['input_info'][
                                input_name] == "const std::vector<Tensor>&":
602 603
                            input_name_tensor_map[input_name].append(
                                (f"{PREFIX_TENSOR_NAME}{input_name}_vec", True))
604
                            input_tensor_code = input_tensor_code + f"""
605
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});
606 607 608 609 610
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name}({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}  for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}.size(); ++i) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name}[i] = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}  }}"""

611 612 613 614
                        else:
                            # do nothing
                            pass
                else:  # input is selected_rows
615 616
                    input_name_tensor_map[input_name].append(
                        (f"{PREFIX_TENSOR_NAME}{input_name}", False))
617
                    input_tensor_code = input_tensor_code + f"""
618 619
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToSelectedRows({input_name});
"""
620 621 622 623 624
            else:
                if input_name in self.infer_meta['param']:
                    if input_name in self.optional_vars:
                        input_tensor_code = input_tensor_code + f"""
{code_indent}  paddle::optional<phi::TensorBase> {PREFIX_TENSOR_NAME}{input_name} = {input_name} ? paddle::optional<phi::TensorBase>(*{input_name}->impl()) : paddle::none;"""
625

626
                    else:
627 628 629 630 631 632 633
                        if self.inputs['input_info'][
                                input_name] == "const std::vector<Tensor>&":
                            input_tensor_code = input_tensor_code + f"""
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_uq_ptr = TensorToDenseTensor({input_name});
{code_indent}  const auto& {PREFIX_TENSOR_NAME}{input_name} = *{PREFIX_TENSOR_NAME}{input_name}_uq_ptr;"""
                        else:
                            input_tensor_code = input_tensor_code + f"""
634
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = {input_name}.impl();"""
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
        input_tensor_code = input_tensor_code + f"""
{code_indent}  if(platform::RecordOpInfoSupplement::IsEnabled()){{"""
        single_tensor_names = []
        list_tensor_names = []
        for input_name, input_tensors in input_name_tensor_map.items():
            has_vector_tensor = False
            for input_tensor, is_vector in input_tensors:
                if is_vector is True:
                    has_vector_tensor = True
            if has_vector_tensor is False:
                single_tensor_names.append(input_name)
            else:
                list_tensor_names.append(input_name)
        if not single_tensor_names:
            input_tensor_code = input_tensor_code + f"""
{code_indent}     std::vector<std::pair<const char*, std::vector<phi::DDim>>> input_shapes;"""
        else:
            input_tensor_code = input_tensor_code + f"""
{code_indent}     std::vector<std::pair<const char*, std::vector<phi::DDim>>> input_shapes{{"""
            for input_name in single_tensor_names[:-1]:
                input_tensors = input_name_tensor_map[input_name]
                input_tensor_code = input_tensor_code + f"""            
{code_indent}     {{"{input_name}", {{"""
                for input_tensor, _ in input_tensors[:-1]:
                    input_tensor_code = input_tensor_code + f"""            
{code_indent}     (*{input_tensor}).dims(),"""
                input_tensor_code = input_tensor_code + f"""            
{code_indent}     (*{input_tensors[-1][0]}).dims()}}}},"""
            input_tensors = input_name_tensor_map[single_tensor_names[-1]]
            input_tensor_code = input_tensor_code + f"""            
{code_indent}     {{"{single_tensor_names[-1]}", {{"""
            for input_tensor, _ in input_tensors[:-1]:
                input_tensor_code = input_tensor_code + f"""            
{code_indent}     (*{input_tensor}).dims(),"""
            input_tensor_code = input_tensor_code + f"""            
{code_indent}     (*{input_tensors[-1][0]}).dims()}}}}}};"""
        if list_tensor_names:
            input_tensor_code = input_tensor_code + f"""
{code_indent}     std::vector<phi::DDim> ddims_vec;"""
        for input_name in list_tensor_names:
            input_tensor_code = input_tensor_code + f"""
{code_indent}     ddims_vec.clear();"""
            for input_tensor, is_vector in input_name_tensor_map[input_name]:
                if is_vector:
                    input_tensor_code = input_tensor_code + f"""
{code_indent}     ddims_vec.reserve({input_tensor[:-4]}.size());
{code_indent}     for (size_t i = 0; i < {input_tensor[:-4]}.size(); ++i) {{
{code_indent}       ddims_vec.emplace_back((*{input_tensor[:-4]}[i]).dims());
{code_indent}     }}"""
                else:
                    input_tensor_code = input_tensor_code + f"""  
                  ddims_vec.emplace_back((*{input_tensor}).dims());
{code_indent}     """
            input_tensor_code = input_tensor_code + f"""
{code_indent}     input_shapes.emplace_back("{input_name}", ddims_vec);"""

        input_tensor_code = input_tensor_code + f"""
{code_indent}     platform::RecordOpInfoSupplement("{self.api}", input_shapes);
{code_indent}  }}"""
694
        kernel_args = ["*dev_ctx"]
695 696
        for param in kernel_param:
            if param in input_names:
697
                if param in self.optional_vars:
698
                    kernel_args.append(PREFIX_TENSOR_NAME + param)
699
                else:
700
                    if self.inputs['input_info'][param] == "const Tensor&":
701
                        kernel_args.append("*" + PREFIX_TENSOR_NAME + param)
702
                    elif self.inputs['input_info'][
703
                            param] == "const std::vector<Tensor>&":
704
                        kernel_args.append(PREFIX_TENSOR_NAME + param)
705 706 707
                    else:
                        # do nothing
                        pass
708 709 710
                # input is dense tensor
                if kernel_tensor_type is None or kernel_tensor_type[0][
                        kernel_param.index(param)] == 'dense':
711
                    kernel_args_type_list.append(
712 713 714 715
                        dense_input_trans_map[input_infos[param]])
                else:  # input is selected_rows
                    kernel_args_type_list.append(
                        sr_input_trans_map[input_infos[param]])
716 717
            elif param in attr_names:
                # set attr for kernel_context
718 719 720
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
721 722 723 724
                elif 'vector<phi::Scalar>' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append(
                        'const std::vector<phi::Scalar>&')
                    param = param
725
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
726 727
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
728
                else:
729 730
                    kernel_args_type_list.append(
                        self.attrs['attr_info'][param][0])
731
                kernel_args.append(param)
732
            elif isinstance(param, bool):
733
                kernel_args.append(str(param).lower())
734
            else:
735
                kernel_args.append(str(param))
736

737 738 739 740 741 742
        for i, out_type in enumerate(self.outputs['types']):
            # output is dense tensor
            if kernel_tensor_type is None or kernel_tensor_type[1][i] == 'dense':
                kernel_args_type_list.append(dense_out_trans_map[out_type])
            else:  # output is selected_rows
                kernel_args_type_list.append(sr_out_trans_map[out_type])
743 744 745

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

746
        return input_tensor_code, ", ".join(kernel_args), kernel_signature
747

748 749
    # Override by child class
    def gene_return_code(self):
750
        return "return api_output;"
751

752
    # Override by child class
753
    def gene_output(self,
754 755 756
                    out_dtype_list,
                    out_tensor_type_list=None,
                    code_indent='',
757
                    inplace_flag=False):
758 759
        return None, None, None

760 761
    def gen_kernel_code(self, kernel_name, code_indent, inplace_flag=False):
        kernel_dispatch = self.kernel['dispatch'][kernel_name]
762
        input_tensors, kernel_args, kernel_signature = self.get_kernel_args(
763 764
            kernel_dispatch, code_indent)
        out_tensor_type_list = kernel_dispatch[1] if kernel_dispatch else None
765
        outputs_args, kernel_output_names, output_create = self.gene_output(
766 767
            self.outputs['types'], out_tensor_type_list, code_indent,
            inplace_flag)
768 769 770 771 772
        fallback_kernel_output_trans = ""
        for kernel_out in outputs_args:
            fallback_kernel_output_trans += (f"""
{code_indent}    TransDataBackend({kernel_out}, kernel_backend, {kernel_out});"""
                                             )
Z
zyfncg 已提交
773
        cudnn_args = '' if self.kernel[
774
            'use_gpudnn'] == 'false' else ', ' + self.kernel['use_gpudnn']
775
        return f"""
F
From00 已提交
776
{code_indent}  VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
777
{code_indent}  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
778
{code_indent}      "{kernel_name}", {{kernel_backend, kernel_layout, kernel_data_type}}{cudnn_args});
779
{code_indent}  const auto& kernel = kernel_result.kernel;
780
{code_indent}  VLOG(6) << "{kernel_name} kernel: " << kernel;
781
{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_result.has_fallback_cpu ? Backend::CPU : kernel_backend);
782 783
{input_tensors}
{output_create}
784 785 786 787
{code_indent}  paddle::platform::RecordEvent *infer_shape_record_event = nullptr;
{code_indent}  if(paddle::platform::RecordEvent::IsEnabled()){{
{code_indent}    infer_shape_record_event = new paddle::platform::RecordEvent(\"{self.api} infer_meta\", paddle::platform::TracerEventType::OperatorInner, 1);
{code_indent}  }}
788
{self.gene_infer_meta(kernel_output_names, code_indent)}
789 790 791
{code_indent}  if(infer_shape_record_event != nullptr){{
{code_indent}    delete infer_shape_record_event;
{code_indent}  }}
792 793
{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
794 795 796 797
{code_indent}  paddle::platform::RecordEvent* kernel_record_event = nullptr;
{code_indent}  if(paddle::platform::RecordEvent::IsEnabled()){{
{code_indent}    kernel_record_event = new paddle::platform::RecordEvent(\"{self.api} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
{code_indent}  }}
798
{code_indent}    (*kernel_fn)({kernel_args}, {", ".join(outputs_args)});
799 800
{code_indent}  if(kernel_record_event != nullptr){{
{code_indent}    delete kernel_record_event;
801 802 803
{code_indent}  }}
{code_indent}  if (kernel_result.has_fallback_cpu) {{
{fallback_kernel_output_trans}
804
{code_indent}  }}
805

806
{code_indent}  {self.gene_return_code()}"""
807

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
    def get_condition_code(self, kernel_name):
        assert self.kernel['dispatch'][kernel_name], \
                f"{self.api} api: the tensor type of inputs and outputs for kernel isn't set, see also 'kernel:func' of 'scale' in api.yaml."
        input_types = self.kernel['dispatch'][kernel_name][0]
        condition_list = []
        for i, in_type in enumerate(input_types):
            if in_type == "dense":
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_dense_tensor())"
                    )
                else:
                    condition_list.append(
                        f"{self.inputs['names'][i]}.is_dense_tensor()")
            else:
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_selected_rows())"
                    )
                else:
                    condition_list.append(
                        f"{self.inputs['names'][i]}.is_selected_rows()")
        return " && ".join(condition_list)
831

832 833 834 835 836 837
    def gene_dispatch_code(self, kernel_name, inplace_flag=False):
        return f"""
  if ({self.get_condition_code(kernel_name)}) {{
{self.gen_kernel_code(kernel_name, '  ', inplace_flag)}
  }}
"""
838

839
    def gene_base_api_code(self, inplace_flag=False):
840 841 842
        api_func_name = self.get_api_func_name()
        if inplace_flag and api_func_name[-1] != '_':
            api_func_name += '_'
843
        api_code = f"""
844
PADDLE_API {self.get_return_type(inplace_flag)} {api_func_name}({self.get_define_args(inplace_flag)}) {{
845
{self.gene_kernel_select()}
846
"""
847

848 849 850 851 852
        if len(self.kernel['func']) > 1:
            kernel_dispatch_code = ''
            for kernel_name in self.kernel['func']:
                kernel_dispatch_code += self.gene_dispatch_code(
                    kernel_name, inplace_flag)
853
            return api_code + f"""
854 855 856
{kernel_dispatch_code}
  PADDLE_THROW(phi::errors::Unimplemented(
          "The kernel of ({self.api}) for input tensors is unimplemented, please check the type of input tensors."));
857
}}
858
"""
859
        else:
860 861
            return api_code + self.gen_kernel_code(self.kernel['func'][0], '',
                                                   inplace_flag) + """
862
}
863 864
"""

865 866
    def gene_invoke_code(self, invoke_code, params_code):
        return f"""
867
PADDLE_API {self.get_return_type()} {self.api}({params_code}) {{
868 869 870
  return {invoke_code};
}}"""

871 872 873
    def gene_api_code(self):
        if self.is_base_api:
            api_code = self.gene_base_api_code()
874
            if len(self.inplace_map) > 0:
Z
zyfncg 已提交
875 876
                if self.api[-1] == '_':
                    api_code = ""
877 878 879
                api_code = api_code + self.gene_base_api_code(inplace_flag=True)
            return api_code

880
        else:
881 882
            invoke_func_name = self.invoke.split('(')[0].strip()
            if invoke_func_name in self.attrs['names']:
883
                # Adjust the param whose name is same with api invoked.
884
                pattern = r'\W' + invoke_func_name + '[^A-Za-z0-9_(]'
885 886 887 888 889 890 891

                def adjust_name(matched):
                    matched_str = matched.group()
                    return matched_str[0:-1] + '_val' + matched_str[-1]

                invoke_code = re.sub(pattern, adjust_name, self.invoke)
                params_code = re.sub(pattern, adjust_name,
892
                                     self.get_define_args())
893 894
            else:
                invoke_code = self.invoke
895 896
                params_code = self.get_define_args()
            return self.gene_invoke_code(invoke_code, params_code)