rocm_helper.h 2.6 KB
Newer Older
W
Wilber 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
namespace phi {
W
Wilber 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
namespace backends {
namespace gpu {

/*
 * Summary: Grid stride looping macro in CUDA kernel
 *
 *  [ Why need this macro? ]
 *
 *    The original looping in CUDA kernel is:
 *
 *    `for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
 *        i += blockDim.x * gridDim.x)`
 *
 *    This for condition is risky. The value of `blockIdx.x * blockDim.x`
 *    may be large, such as over 1GB, the first iteration is no problem here,
 *    but when `i += blockDim.x * gridDim.x` is executed, the value of i
 *    will greater than INT_MAX and overflow becomes negative value, at
 *    this time, the cycle condition `i < (n)` is still satisfied, so it
 *    will cause illegal access to cuda memory.
 *
 *    Here is a real example in ERINE, it will trigger above error.
 *    The related data are:
 *      - blockIdx.x = 2172938
 *      - blockDim.x = 512
 *      - blockIdx.x * blockDim.x = 1112543864
 *      - INT_MAX = 2147483647
 *
 *    So we polish the for condition as follow, the int64_t __index__ will
 *    prevent overflow in the loop increment.
 *
 * Parameters:
 *    - i: loop index
 *    - num: total element numbers
 *
 * Examples:
 *    template <typename T>
 *    __global__ void Scale(T* logit_grad, const T* loss_grad, const int num,
 *                      const int d, const int remain) {
 *    CUDA_KERNEL_LOOP(index, num) {
 *      int idx_n = index / d;
 *      int idx_remain = index % remain;
 *      logit_grad[index] *= loss_grad[idx_n * remain + idx_remain];
 *      }
 *    }
 *
63
 */
W
Wilber 已提交
64

65 66 67
#define CUDA_KERNEL_LOOP_TYPE(i, num, index_type)                           \
  int64_t __index__ =                                                       \
      static_cast<int64_t>(hipBlockIdx_x) * hipBlockDim_x + hipThreadIdx_x; \
S
sneaxiy 已提交
68
  int64_t __stride__ = static_cast<int64_t>(hipBlockDim_x) * hipGridDim_x;  \
69
  for (index_type i = __index__; __index__ < (num);                         \
S
sneaxiy 已提交
70
       __index__ += __stride__, i = __index__)
W
Wilber 已提交
71 72 73

}  // namespace gpu
}  // namespace backends
74
}  // namespace phi