device_context.cc 20.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
21
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/platform/cuda_device_guard.h"
23
#endif
24

25 26
#include "glog/logging.h"

27 28 29 30 31
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
32
  if (size == 0) {
33 34
    return Alloc(place, size);
  }
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

  if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
56 57
    return Alloc(place, size);
#else
58 59 60
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
61
#endif
62 63 64
  } else {
    return Alloc(place, size);
  }
65 66 67 68 69
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
70 71 72
namespace paddle {
namespace platform {

D
dzhwinter 已提交
73 74
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
75
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
76 77
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
78 79
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
80 81
        "with WITH_GPU or WITH_XPU option or check that your train process "
        "hold the "
G
GaoWei8 已提交
82 83
        "correct gpu_id if you use Executor.",
        place));
D
dzhwinter 已提交
84
  }
85
  return it->second.get().get();
D
dzhwinter 已提交
86 87
}

88 89 90 91 92 93 94 95 96
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
97
                     return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
98
                   }));
C
chengduozh 已提交
99 100
}

D
dzhwinter 已提交
101 102
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
103 104 105 106 107
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
108
  std::set<Place> set;
Y
Yu Yang 已提交
109 110 111 112 113
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
114
#ifdef PADDLE_WITH_MKLDNN
115
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
116
#else
117
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
118
#endif
Y
Yu Yang 已提交
119
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
120
#ifdef PADDLE_WITH_CUDA
121
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
122
#else
G
GaoWei8 已提交
123 124 125
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
126 127 128
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
129 130
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
131
#else
G
GaoWei8 已提交
132
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
133 134
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
135 136 137 138 139 140 141 142
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
D
dzhwinter 已提交
143 144 145 146 147
#endif
    }
  }
}

148 149 150 151
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
152
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
153 154 155 156 157 158 159
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
160
Place CPUDeviceContext::GetPlace() const { return place_; }
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#ifdef PADDLE_WITH_XPU
XPUDeviceContext::XPUDeviceContext() { context_ = xpu::create_context(); }

XPUDeviceContext::~XPUDeviceContext() { xpu::destroy_context(context_); }

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
  int dev_id = -1;
  int ret = xpu_current_device(&dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  ret = xpu_set_device(place.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  context_ = xpu::create_context();
  ret = xpu_set_device(dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
}

void XPUDeviceContext::Wait() const {
  int ret = xpu_set_device(place_.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  xpu_wait();
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

205
#ifdef PADDLE_WITH_CUDA
206

Q
init  
qijun 已提交
207 208 209 210 211 212 213
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
214
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
215 216 217 218 219 220 221 222 223 224 225 226
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
227 228 229
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
230 231 232
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
233
    void* retv = buf->ptr();
S
sneaxiy 已提交
234 235 236 237
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
238
    return retv;
Q
init  
qijun 已提交
239 240
  }

S
sneaxiy 已提交
241 242 243 244 245 246
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
247 248 249

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
250 251 252 253
// windows use an old version of eigen that uses kCudaScratchSize,
// once windows updates eigen to a recent version, the following code
// can use kGpuScratchSize uniformly
#ifdef _WIN32
Q
init  
qijun 已提交
254
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
Z
Zhang Ting 已提交
255 256 257
#else
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
#endif
Q
init  
qijun 已提交
258 259 260 261 262 263
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
264
#ifdef _WIN32
Q
init  
qijun 已提交
265 266
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
Z
Zhang Ting 已提交
267 268 269
#else
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
#endif
Q
init  
qijun 已提交
270
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
271
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
272 273 274 275 276 277
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
278
  CUDAPlace place_;
Q
init  
qijun 已提交
279 280
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
281
  mutable void* scratch_;
Q
init  
qijun 已提交
282
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
283
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
284
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
285 286
};

287 288 289 290 291 292 293 294 295
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

296 297 298 299 300 301 302 303 304 305 306 307
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
308
                         const stream::Priority& priority) {
309 310 311 312 313 314
  place_ = place;
  CUDADeviceGuard guard(place_.device);
  stream_.reset(new stream::CUDAStream(place, priority));
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
G
Guo Sheng 已提交
315
  InitCuSolverContext();
316 317 318 319 320 321
}

CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
G
Guo Sheng 已提交
322
  DestoryCuSolverContext();
323 324
}

325
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
326
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
327 328 329
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
330
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
331
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
332

C
chengduo 已提交
333 334 335
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

336
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
337 338 339
                          << ", GPU Compute Capability: "
                          << compute_capability_ / 10 << "."
                          << compute_capability_ % 10
C
chengduo 已提交
340
                          << ", Driver API Version: " << driver_version_ / 1000
341
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
342 343 344
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
345 346 347
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
348
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
349 350 351

  {
    // Check CUDA/CUDNN version compatiblity
352 353 354 355
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
356 357 358 359 360 361 362 363 364 365 366 367
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
368
  default_ctx_.reset(new CUDAContext(place_));
369 370 371 372
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
373 374 375 376 377
#if defined(PADDLE_WITH_NCCL)
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
378 379
}

L
liaogang 已提交
380
Place CUDADeviceContext::GetPlace() const { return place_; }
381

382
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
383

K
Kexin Zhao 已提交
384
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
385
  return compute_capability_;
K
Kexin Zhao 已提交
386 387
}

388
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
389
  return multi_process_ * max_threads_per_mp_;
390 391
}

392 393 394 395 396 397
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

398
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
399
  return context()->EigenDevice().get();
400 401
}

402
bool CUDADeviceContext::tensor_core_available() const {
403
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
404 405
}

406 407 408 409
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

410 411 412
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return context()->CudnnHandle();
}
413

S
sneaxiy 已提交
414
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
415
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
416
}
417

G
Guo Sheng 已提交
418 419 420 421
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}

422 423 424
cudaStream_t CUDADeviceContext::stream() const {
  return context()->RawStream();
}
Q
qijun 已提交
425

C
chengduoZH 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
440
#endif
Q
qijun 已提交
441

T
tensor-tang 已提交
442 443
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
A
Adam 已提交
444 445 446
    : CPUDeviceContext(place),
      engine_(mkldnn::engine::kind::cpu, 0),
      p_blobmap_() {
447 448
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
449 450
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
MKLDNNDeviceContextThreadLocals::Body::Body() {
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
468 469
  cur_input_shape_str = input_shape_str;
}
470 471
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
472 473
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
474

475 476
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
477 478 479
  cur_paddle_data_layout = dl;
}

480 481
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
482 483 484
  return cur_paddle_data_layout;
}

485 486 487 488 489 490 491 492 493
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
void MKLDNNDeviceContext::ResetBlobMap() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
    p_blobmap_->clear();
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
509
}
510

511
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
512
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
513
  BlobMap* pMap = p_blobmap_.get();
514
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
515
  if (map_it == pMap->end()) {
516 517 518
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
519 520 521 522
  }
  return map_it->second->size();
}

523
void MKLDNNDeviceContext::SetBlob(const std::string& name,
524
                                  BlobPtr_t<void> data) const {
525
  BlobMap* pMap = p_blobmap_.get();
526 527
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
528

529
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
530

531
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
532

533 534
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
535 536 537

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
538
    sBlob = std::make_shared<ShapeBlob>();
539 540
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
541
  } else {
542
    sBlob = map_it->second;
543
  }
T
tensor-tang 已提交
544

545
  // Find KeyBlob for current input shape
546
  auto key_it = sBlob->find(tls().cur_input_shape_str);
547

548
  if (key_it == sBlob->end()) {
549 550
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
551 552
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
553
        sBlob->size() &&
554
        (sBlob->size() >=
555
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
556 557 558 559
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
560 561
    pBlob = std::make_shared<KeyBlob>();
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
562
  } else {
563
    pBlob = key_it->second;
564 565
  }

566 567 568 569 570 571 572
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
573
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
574
  // lock will be automatically released when out of scope
575
  return;
T
tensor-tang 已提交
576 577
}

578
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
579
    const std::string& name) const {
580
  BlobMap* pMap = p_blobmap_.get();
581 582
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
583

584
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
585

586
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
587

588 589
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
590
  if (map_it == pMap->end()) {
591
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
592 593 594 595 596
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
597
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
598
  if (sBlob_it == sBlob->end()) {
599
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
600 601 602 603
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
604 605 606 607

  // Find Blob via name
  auto key_it = pBlob->find(name);

608
  if (key_it == pBlob->end()) {
609
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
610 611
    return nullptr;
  }
612

613
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
614 615
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
616 617 618 619
}

#endif

Q
qijun 已提交
620
}  // namespace platform
Q
qijun 已提交
621
}  // namespace paddle