NeonDepthwiseConvTranspose.cpp 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "NeonDepthwiseConv.h"
#include "paddle/function/ConvOp.h"

namespace paddle {

#if defined(__ARM_NEON__) || defined(__ARM_NEON)

template <DeviceType Device>
class NeonDepthwiseConvTransposeFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    checkShape(input, filter, output);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    check(inputs, outputs);

    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

    int batchSize = input[0];
    int inputChannels = input[1];
    int inputHeight = input[2];
    int inputWidth = input[3];
    int filterHeight = getFilterHeight(filter);
    int filterWidth = getFilterWidth(filter);
    int outputChannels = output[1];
    int outputHeight = output[2];
    int outputWidth = output[3];
    int filterMultiplier = outputChannels / groups_;
    CHECK_EQ(inputChannels, groups_);

    // only support strideH() == strideW() and filterHeight == filterWidth.
    CHECK_EQ(strideH(), strideW());
    CHECK_EQ(paddingH(), paddingW());
    CHECK_EQ(filterHeight, filterWidth);

    float* inputData = inputs[0].data<float>();
    float* filterData = inputs[1].data<float>();
    float* outputData = outputs[0].data<float>();

    // padding the input, input -> inputPadding
    float* inputPadding = inputData;
    int padInputHeight =
        (inputHeight - 1) * strideH() + 2 * filterHeight - 1 - 2 * paddingH();
    int padInputWidth =
        (inputWidth - 1) * strideW() + 2 * filterWidth - 1 - 2 * paddingW();

    if (padInputHeight > inputHeight || padInputWidth > inputWidth) {
      int newSize = batchSize * inputChannels * padInputHeight * padInputWidth;
      resizeBuffer<Device>(newSize);
      inputPadding = reinterpret_cast<float*>(memory_->getBuf());
      neon::Padding<float>::run(inputData,
                                inputPadding,
                                batchSize * inputChannels,
                                inputHeight,
                                inputWidth,
                                padInputHeight,
                                padInputWidth);
    }

    std::function<void(
        const float*, const float*, int, int, int, int, int, int, float*)>
        DepthWiseConv;

    if (filterWidth == 3) {
      DepthWiseConv = neon::DepthwiseConvKernel<3, 1>::run;
    } else if (filterWidth == 4) {
      DepthWiseConv = neon::DepthwiseConvKernel<4, 1>::run;
    } else {
      LOG(FATAL) << "Not supported";
    }

    for (int i = 0; i < batchSize; i++) {
      DepthWiseConv(inputPadding,
                    filterData,
                    padInputHeight,
                    padInputWidth,
                    outputChannels,
                    outputHeight,
                    outputWidth,
                    filterMultiplier,
                    outputData);
      inputPadding += inputChannels * padInputHeight * padInputWidth;
      outputData += outputChannels * outputHeight * outputWidth;
    }
  }
};

#ifndef PADDLE_TYPE_DOUBLE

REGISTER_TYPED_FUNC(NeonDepthwiseConvTranspose,
                    CPU,
                    NeonDepthwiseConvTransposeFunction);

#endif

#endif

}  // namespace paddle