common_shape.h 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
20

21
namespace phi {
22
namespace funcs {
23

24 25
inline void SetXShape(const DenseTensor &x, DenseTensor *xshape) {
  const auto &in_dims = x.meta().dims;
26 27 28 29 30
  std::vector<int64_t> xshape_dims(in_dims.size() + 1);
  xshape_dims[0] = 0;
  for (int i = 0; i < in_dims.size(); ++i) {
    xshape_dims[i + 1] = in_dims[i];
  }
31
  xshape->ResizeAndAllocate(phi::make_ddim(xshape_dims));
32 33 34
  xshape->ResetLoD(x.meta().lod);
}

35 36 37 38 39 40 41 42 43 44
inline void GetBroadcastDimsArrays(const DDim &x_dims,
                                   const DDim &y_dims,
                                   int *x_dims_array,
                                   int *y_dims_array,
                                   int *out_dims_array,
                                   const int max_dim,
                                   const int axis) {
  PADDLE_ENFORCE_GE(
      axis,
      0,
45
      phi::errors::InvalidArgument(
46 47 48 49
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis,
                    max_dim,
50
                    phi::errors::InvalidArgument(
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim,
                        axis));
  if (x_dims.size() > y_dims.size()) {
    std::fill(y_dims_array, y_dims_array + axis, 1);
    if (axis + y_dims.size() < max_dim) {
      std::fill(y_dims_array + axis + y_dims.size(), y_dims_array + max_dim, 1);
    }
    std::copy(x_dims.Get(), x_dims.Get() + x_dims.size(), x_dims_array);
    std::copy(y_dims.Get(), y_dims.Get() + y_dims.size(), y_dims_array + axis);
  } else {
    std::fill(x_dims_array, x_dims_array + axis, 1);
    if (axis + x_dims.size() < max_dim) {
      std::fill(x_dims_array + axis + x_dims.size(), x_dims_array + max_dim, 1);
    }
    std::copy(x_dims.Get(), x_dims.Get() + x_dims.size(), x_dims_array + axis);
    std::copy(y_dims.Get(), y_dims.Get() + y_dims.size(), y_dims_array);
  }

  for (int i = 0; i < max_dim; i++) {
    PADDLE_ENFORCE_EQ(
        x_dims_array[i] == y_dims_array[i] || x_dims_array[i] <= 1 ||
            y_dims_array[i] <= 1,
        true,
75
        phi::errors::InvalidArgument(
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
            "Broadcast dimension mismatch. Operands could "
            "not be broadcast together with the shape of X = [%s] and "
            "the shape of Y = [%s]. Received [%d] in X is not equal to "
            "[%d] in Y at i:%d.",
            x_dims,
            y_dims,
            x_dims_array[i],
            y_dims_array[i],
            i));
    if ((x_dims_array[i] > 1 || y_dims_array[i] > 1) ||
        (x_dims_array[i] == 1 && y_dims_array[i] == 1)) {
      out_dims_array[i] = (std::max)(x_dims_array[i], y_dims_array[i]);
    } else {
      out_dims_array[i] = -1;
    }
  }
}

H
hong 已提交
94
inline void GetPrePostNumel(
95
    const DDim &dim, int axis, int *pre, int *n, int *post) {
H
hong 已提交
96 97 98 99 100 101 102 103 104 105 106
  *pre = 1;
  *post = 1;
  *n = dim[axis];
  for (int i = 0; i < axis; ++i) {
    (*pre) *= dim[i];
  }
  for (int i = axis + 1; i < dim.size(); ++i) {
    (*post) *= dim[i];
  }
}

107
static DDim ExtendDims2Rank(const DDim &in_dims, int rank) {
0
0x45f 已提交
108 109 110 111 112 113 114
  if (in_dims.size() == rank) {
    return in_dims;
  }
  std::vector<int64_t> shapes(rank, 1);
  for (int i = in_dims.size() - 1, j = rank - 1; i >= 0; --i, --j) {
    shapes[j] = in_dims[i];
  }
115
  return make_ddim(shapes);
0
0x45f 已提交
116 117 118
}

template <size_t D>
119 120
static void GetBroadcastDims(const DDim &in_dims,
                             const DDim &out_dims,
0
0x45f 已提交
121 122 123 124 125 126 127 128 129 130
                             Eigen::DSizes<int, D> *bcast_dims) {
  for (size_t i = 0; i < D; ++i) {
    if (in_dims[i] == out_dims[i]) {
      (*bcast_dims)[i] = 1;
    } else {
      (*bcast_dims)[i] = std::max(in_dims[i], out_dims[i]);
    }
  }
}

0
0x45f 已提交
131 132 133 134 135 136 137 138 139 140 141 142
inline bool CheckDims(const DDim &dims_x, const DDim &dims_y) {
  if (dims_x.size() != dims_y.size()) {
    return false;
  }
  for (int i = 0; i < dims_x.size(); i++) {
    if (dims_x[i] != dims_y[i]) {
      return false;
    }
  }
  return true;
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
// Just For Matrix OP, for example:
// x's dim = [5, 3, 2, M, M] ; y's dim = [3, 1, M, N]
// out [5, 3, 2], which is batch_size of matrix
static inline std::vector<int64_t> MatrixGetBroadcastBatchPortion(
    std::vector<int64_t> x, std::vector<int64_t> y) {
  size_t size_x = x.size();
  size_t size_y = y.size();
  size_t size = std::max(size_x, size_y);
  std::vector<int64_t> batchPortion(size);

  ptrdiff_t i = (ptrdiff_t)size - 1;
  for (; i >= 0; --i) {
    ptrdiff_t offset = size - i - 1;
    ptrdiff_t dim_x = size_x - offset - 1;
    ptrdiff_t dim_y = size_y - offset - 1;
    int64_t x_size = (dim_x >= 0) ? x[dim_x] : 1;
    int64_t y_size = (dim_y >= 0) ? y[dim_y] : 1;

    PADDLE_ENFORCE_EQ(
        (x_size == y_size || x_size == 1 || y_size == 1),
        true,
        phi::errors::PreconditionNotMet(
            "The size of tensor x (%d) must match the size of tensor y "
            "(%d) at non-singleton dimension %d.",
            x_size,
            y_size,
            i));

    batchPortion[i] = x_size != 1 ? x_size : y_size;
  }
  return batchPortion;
}

// Just For Matrix OP, for example:
// x's dim = [5, 3, 2, M, M] ; y's dim = [3, 1, M, N]
// out shoule be [5, 3, 2, M, M] + [5, 3, 2, M, N], and [5, 3, 2] is
// batch_size of matrix
static inline std::tuple<std::vector<int64_t>, std::vector<int64_t>>
MatrixGetBroadcastDims(const DenseTensor &x, const DenseTensor &y) {
  std::vector<int64_t> x_dims_vec = phi::vectorize(x.dims());
  std::vector<int64_t> y_dims_vec = phi::vectorize(y.dims());

  std::vector<int64_t>::const_iterator f1 = x_dims_vec.begin();
  std::vector<int64_t>::const_iterator l1 = x_dims_vec.end() - 2;
  std::vector<int64_t> x_dims_vec_cut(f1, l1);

  std::vector<int64_t>::const_iterator f2 = y_dims_vec.begin();
  std::vector<int64_t>::const_iterator l2 = y_dims_vec.end() - 2;
  std::vector<int64_t> y_dims_vec_cut(f2, l2);

  std::vector<int64_t> expand_batch_portion =
      MatrixGetBroadcastBatchPortion(x_dims_vec_cut, y_dims_vec_cut);

  std::vector<int64_t> x_expand_size({expand_batch_portion});
  x_expand_size.insert(x_expand_size.end(),
                       {x_dims_vec[static_cast<int>(x_dims_vec.size()) - 2],
                        x_dims_vec[static_cast<int>(x_dims_vec.size()) - 1]});

  std::vector<int64_t> y_expand_size({expand_batch_portion});
  y_expand_size.insert(y_expand_size.end(),
                       {y_dims_vec[static_cast<int>(y_dims_vec.size()) - 2],
                        y_dims_vec[static_cast<int>(y_dims_vec.size()) - 1]});

  return std::make_tuple(x_expand_size, y_expand_size);
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
inline DDim GetOutputDims(const DDim &s_dims, const DDim &l_dims) {
  if (s_dims.size() > l_dims.size()) {
    return GetOutputDims(l_dims, s_dims);
  }
  std::vector<int64_t> shapes = phi::vectorize<int64_t>(l_dims);
  for (int i = s_dims.size() - 1, j = l_dims.size() - 1; i >= 0; --i, --j) {
    int64_t s = s_dims[i];
    int64_t l = l_dims[j];
    if (s != l) {
      if (l == 1) {
        shapes[j] = s;
      } else if (s != 1) {
        PADDLE_THROW(errors::InvalidArgument(
            "The shape of tensor a %s:%d must match shape of tensor b "
            "%s:%d.",
            s_dims.to_str(),
            i,
            l_dims.to_str(),
            j));
      }
    }
  }
  return phi::make_ddim(shapes);
}

234 235 236 237 238 239 240 241 242 243 244
inline int64_t CalStride(phi::DDim dim) {
  int rank = dim.size();
  int64_t dimsum = 1;
  int64_t strides = 0;
  for (int i = rank - 1; i >= 0; i--) {
    strides += dimsum;
    dimsum *= dim[i];
  }
  return strides;
}

245
}  // namespace funcs
246
}  // namespace phi