ps_gpu_wrapper.cc 18.8 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
29
#ifdef PADDLE_WITH_HETERPS
Y
yaoxuefeng 已提交
30

T
Thunderbrook 已提交
31
#include <algorithm>
Y
yaoxuefeng 已提交
32 33
#include <deque>

T
Thunderbrook 已提交
34 35 36 37 38 39 40 41 42
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#include "paddle/fluid/platform/timer.h"

namespace paddle {
namespace framework {

std::shared_ptr<PSGPUWrapper> PSGPUWrapper::s_instance_ = NULL;
bool PSGPUWrapper::is_initialized_ = false;

43
void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task) {
Y
yaoxuefeng 已提交
44
  VLOG(3) << "PSGPUWrapper::BuildGPUPSTask begin";
T
Thunderbrook 已提交
45 46
  platform::Timer timeline;
  timeline.Start();
47
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
48
  MultiSlotDataset* dataset = dynamic_cast<MultiSlotDataset*>(dataset_);
49
  gpu_task->init(thread_keys_shard_num_, device_num);
Y
yaoxuefeng 已提交
50 51 52
  auto input_channel = dataset->GetInputChannel();
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;
53 54 55 56 57

  auto& device_keys = gpu_task->device_keys_;
  auto& device_vals = gpu_task->device_values_;
  auto& device_mutex = gpu_task->mutex_;

Y
yaoxuefeng 已提交
58
  std::vector<std::thread> threads;
T
Thunderbrook 已提交
59
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
60
  auto fleet_ptr = FleetWrapper::GetInstance();
T
Thunderbrook 已提交
61 62 63 64
#endif
#ifdef PADDLE_WITH_PSCORE
  auto fleet_ptr = paddle::distributed::Communicator::GetInstance();
#endif
Y
yaoxuefeng 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

  // data should be in input channel
  thread_keys_.resize(thread_keys_thread_num_);
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    thread_keys_[i].resize(thread_keys_shard_num_);
  }
  const std::deque<Record>& vec_data = input_channel->GetData();
  size_t total_len = vec_data.size();
  size_t len_per_thread = total_len / thread_keys_thread_num_;
  int remain = total_len % thread_keys_thread_num_;
  size_t begin = 0;
  auto gen_func = [this](const std::deque<Record>& total_data, int begin_index,
                         int end_index, int i) {
    for (auto iter = total_data.begin() + begin_index;
         iter != total_data.begin() + end_index; iter++) {
      const auto& ins = *iter;
      const auto& feasign_v = ins.uint64_feasigns_;
      for (const auto feasign : feasign_v) {
        uint64_t cur_key = feasign.sign().uint64_feasign_;
        int shard_id = cur_key % thread_keys_shard_num_;
85
        this->thread_keys_[i][shard_id].insert(cur_key);
Y
yaoxuefeng 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98
      }
    }
  };
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    threads.push_back(std::thread(gen_func, std::ref(vec_data), begin,
                                  begin + len_per_thread + (i < remain ? 1 : 0),
                                  i));
    begin += len_per_thread + (i < remain ? 1 : 0);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
99
  VLOG(1) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
100 101 102

  timeline.Start();

103
  threads.clear();
Y
yaoxuefeng 已提交
104
  // merge thread_keys to shard_keys
105 106 107 108
  auto merge_ins_func = [this, gpu_task](int shard_num) {
    for (int i = 0; i < thread_keys_thread_num_; ++i) {
      gpu_task->batch_add_keys(shard_num, thread_keys_[i][shard_num]);
      thread_keys_[i][shard_num].clear();
Y
yaoxuefeng 已提交
109
    }
110 111 112 113 114 115 116 117 118 119 120 121 122
  };

  // for (size_t i = 0; i < thread_keys_.size(); i++) {
  //  gpu_task->batch_add_keys(thread_keys_[i]);
  //  for (int j = 0; j < thread_keys_thread_num_; j++) {
  //    thread_keys_[i][j].clear();
  //  }
  //}
  for (int i = 0; i < thread_keys_shard_num_; ++i) {
    threads.push_back(std::thread(merge_ins_func, i));
  }
  for (auto& t : threads) {
    t.join();
Y
yaoxuefeng 已提交
123 124 125
  }
  timeline.Pause();

126
  VLOG(1) << "GpuPs task unique11111 cost " << timeline.ElapsedSec()
Y
yaoxuefeng 已提交
127 128 129 130 131
          << " seconds.";
  timeline.Start();
  gpu_task->UniqueKeys();
  timeline.Pause();

132
  VLOG(1) << "GpuPs task unique cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
133 134

  for (int i = 0; i < thread_keys_shard_num_; i++) {
135
    VLOG(3) << "GpuPs shard: " << i << " key len: " << local_keys[i].size();
Y
yaoxuefeng 已提交
136 137
    local_ptr[i].resize(local_keys[i].size());
  }
138
  timeline.Start();
139
  auto ptl_func = [this, &local_keys, &local_ptr, &fleet_ptr](int i) {
Y
yaoxuefeng 已提交
140
    size_t key_size = local_keys[i].size();
T
Thunderbrook 已提交
141
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
142
    auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
143
        reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
Y
yaoxuefeng 已提交
144
        local_keys[i].data(), key_size);
T
Thunderbrook 已提交
145 146 147
#endif
#ifdef PADDLE_WITH_PSCORE
    auto tt = fleet_ptr->_worker_ptr->pull_sparse_ptr(
148
        reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
T
Thunderbrook 已提交
149 150
        local_keys[i].data(), key_size);
#endif
Y
yaoxuefeng 已提交
151 152 153 154 155 156 157 158 159 160 161
    tt.wait();
    auto status = tt.get();
    // auto status = 0;
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(300);
      exit(-1);
    } else {
      VLOG(3) << "FleetWrapper Pull sparse to local done with table size: "
              << local_keys[i].size();
    }
162 163 164 165 166 167 168 169
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(ptl_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
170 171
  VLOG(1) << "pull sparse from CpuPS into GpuPS cost " << timeline.ElapsedSec()
          << " seconds.";
172 173 174 175 176

  timeline.Start();
  auto build_func = [device_num, &local_keys, &local_ptr, &device_keys,
                     &device_vals, &device_mutex](int i) {
    std::vector<std::vector<FeatureKey>> task_keys(device_num);
T
Thunderbrook 已提交
177
#ifdef PADDLE_WITH_PSLIB
178 179
    std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs(
        device_num);
T
Thunderbrook 已提交
180 181 182 183 184
#endif

#ifdef PADDLE_WITH_PSCORE
    std::vector<std::vector<paddle::distributed::VALUE*>> task_ptrs(device_num);
#endif
185 186 187 188 189 190 191 192 193 194 195 196 197 198

    for (size_t j = 0; j < local_keys[i].size(); j++) {
      int shard = local_keys[i][j] % device_num;
      task_keys[shard].push_back(local_keys[i][j]);
      task_ptrs[shard].push_back(local_ptr[i][j]);
    }

    for (int dev = 0; dev < device_num; dev++) {
      device_mutex[dev]->lock();

      int len = task_keys[dev].size();
      int cur = device_keys[dev].size();
      device_keys[dev].resize(device_keys[dev].size() + len);
      device_vals[dev].resize(device_vals[dev].size() + len);
T
Thunderbrook 已提交
199
#ifdef PADDLE_WITH_PSLIB
200 201 202 203 204 205 206 207 208 209 210 211
      for (int j = 0; j < len; ++j) {
        device_keys[dev][cur + j] = task_keys[dev][j];
        float* ptr_val = task_ptrs[dev][j]->data();
        FeatureValue& val = device_vals[dev][cur + j];
        size_t dim = task_ptrs[dev][j]->size();

        val.delta_score = ptr_val[1];
        val.show = ptr_val[2];
        val.clk = ptr_val[3];
        val.slot = ptr_val[6];
        val.lr = ptr_val[4];
        val.lr_g2sum = ptr_val[5];
T
Thunderbrook 已提交
212
        val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);
213 214 215 216 217 218 219 220 221 222 223

        if (dim > 7) {
          val.mf_size = MF_DIM + 1;
          for (int x = 0; x < val.mf_size; x++) {
            val.mf[x] = ptr_val[x + 7];
          }
        } else {
          val.mf_size = 0;
          for (int x = 0; x < MF_DIM + 1; x++) {
            val.mf[x] = 0;
          }
Y
yaoxuefeng 已提交
224 225
        }
      }
T
Thunderbrook 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
#endif
#ifdef PADDLE_WITH_PSCORE
      for (int j = 0; j < len; ++j) {
        device_keys[dev][cur + j] = task_keys[dev][j];
        distributed::VALUE* ptr_val = task_ptrs[dev][j];
        FeatureValue& val = device_vals[dev][cur + j];
        bool has_mf = 1;
        val.delta_score = 0;
        val.show = ptr_val->count_;
        val.clk = 0;
        val.slot = 0;
        val.lr = 0;
        val.lr_g2sum = 0;
        val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

        if (has_mf) {
          val.mf_size = MF_DIM + 1;
          for (int x = 0; x < val.mf_size; x++) {
            val.mf[x] = ptr_val->data_[x];
          }
        } else {
          val.mf_size = 0;
          for (int x = 0; x < MF_DIM + 1; x++) {
            val.mf[x] = 0;
          }
        }
      }
#endif
254
      VLOG(3) << "GpuPs build hbmps done";
255 256

      device_mutex[dev]->unlock();
Y
yaoxuefeng 已提交
257 258
    }
  };
259

Y
yaoxuefeng 已提交
260
  for (size_t i = 0; i < threads.size(); i++) {
261
    threads[i] = std::thread(build_func, i);
Y
yaoxuefeng 已提交
262 263 264 265 266
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
267 268
  VLOG(1) << "GpuPs prepare for build hbm cost " << timeline.ElapsedSec()
          << " seconds.";
Y
yaoxuefeng 已提交
269 270
}

271
void PSGPUWrapper::BuildGPUTask(std::shared_ptr<HeterContext> gpu_task) {
272
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
273 274
  platform::Timer timeline;
  timeline.Start();
T
Thunderbrook 已提交
275

276
  std::vector<size_t> feature_keys_count(device_num);
T
Thunderbrook 已提交
277
  size_t size_max = 0;
278 279
  for (int i = 0; i < device_num; i++) {
    feature_keys_count[i] = gpu_task->device_keys_[i].size();
280
    VLOG(1) << i << " card contains feasign nums: " << feature_keys_count[i];
T
Thunderbrook 已提交
281 282 283
    size_max = std::max(size_max, feature_keys_count[i]);
  }
  if (HeterPs_) {
284 285
    delete HeterPs_;
    HeterPs_ = nullptr;
T
Thunderbrook 已提交
286
  }
287 288 289 290
  if (size_max <= 0) {
    VLOG(1) << "Skip build gpu ps cause feasign nums = " << size_max;
    return;
  }
291
  std::vector<std::thread> threads(device_num);
T
Thunderbrook 已提交
292
  HeterPs_ = HeterPsBase::get_instance(size_max, resource_);
293
  HeterPs_->set_nccl_comm_and_size(inner_comms_, inter_comms_, node_size_);
Y
yaoxuefeng 已提交
294
  auto build_func = [this, &gpu_task, &feature_keys_count](int i) {
295
    VLOG(3) << "building table: " << i;
296 297 298
    this->HeterPs_->build_ps(i, gpu_task->device_keys_[i].data(),
                             gpu_task->device_values_[i].data(),
                             feature_keys_count[i], 500000, 2);
299 300 301
    if (feature_keys_count[i] > 0) {
      HeterPs_->show_one_table(i);
    }
Y
yaoxuefeng 已提交
302 303 304 305 306 307
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(build_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
T
Thunderbrook 已提交
308 309
  }
  timeline.Pause();
310
  VLOG(1) << "GpuPs build table total costs: " << timeline.ElapsedSec()
T
Thunderbrook 已提交
311
          << " s.";
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
}

void PSGPUWrapper::LoadIntoMemory(bool is_shuffle) {
  platform::Timer timer;
  VLOG(3) << "Begin LoadIntoMemory(), dataset[" << dataset_ << "]";
  timer.Start();
  dataset_->LoadIntoMemory();
  timer.Pause();
  VLOG(0) << "LoadIntoMemory cost: " << timer.ElapsedSec() << "s";

  // local shuffle
  if (is_shuffle) {
    dataset_->LocalShuffle();
  }

  std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
  gpu_task->Reset();
  data_ready_channel_->Put(gpu_task);
  VLOG(3) << "End LoadIntoMemory(), dataset[" << dataset_ << "]";
}

void PSGPUWrapper::start_build_thread() {
  running_ = true;
  VLOG(3) << "start build CPU&GPU ps thread.";
  build_cpu_threads_ = std::thread([this] { build_cpu_thread(); });
  build_gpu_threads_ = std::thread([this] { build_gpu_thread(); });
}

void PSGPUWrapper::build_cpu_thread() {
  while (running_) {
    std::shared_ptr<HeterContext> gpu_task = nullptr;
    if (!data_ready_channel_->Get(gpu_task)) {
      continue;
    }
    VLOG(3) << "thread BuildTask start.";
    platform::Timer timer;
    timer.Start();
    // build cpu ps data process
    BuildTask(gpu_task);
    timer.Pause();
    VLOG(1) << "thread BuildTask end, cost time: " << timer.ElapsedSec() << "s";
    buildcpu_ready_channel_->Put(gpu_task);
  }
  VLOG(3) << "build cpu thread end";
}

void PSGPUWrapper::build_gpu_thread() {
  while (running_) {
    std::shared_ptr<HeterContext> gpu_task = nullptr;
    if (!gpu_free_channel_->Get(gpu_task)) {
      continue;
    }
    if (!buildcpu_ready_channel_->Get(gpu_task)) {
      continue;
    }
    VLOG(3) << "thread BuildGPUTask start.";
    platform::Timer timer;
    timer.Start();
    BuildGPUTask(gpu_task);
    timer.Pause();
    VLOG(1) << "thread BuildGPUTask end, cost time: " << timer.ElapsedSec()
            << "s";

    gpu_task_pool_.Push(gpu_task);
    train_ready_channel_->Put(gpu_task);
  }
  VLOG(3) << "build gpu thread end";
}

void PSGPUWrapper::BeginPass() {
  platform::Timer timer;
  timer.Start();
  if (current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[BeginPass] current task is not ended."));
  }
  // load+build done
  if (!train_ready_channel_->Get(current_task_)) {
    PADDLE_THROW(platform::errors::Fatal("train_ready_channel_ failed."));
  }
  timer.Pause();
  VLOG(1) << "BeginPass end, cost time: " << timer.ElapsedSec() << "s";
}

void PSGPUWrapper::EndPass() {
  if (!current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[EndPass] current task has been ended."));
  }
  platform::Timer timer;
  timer.Start();
  size_t keysize_max = 0;
  // in case of feasign_num = 0, skip dump_to_cpu
  for (size_t i = 0; i < heter_devices_.size(); i++) {
    keysize_max = std::max(keysize_max, current_task_->device_keys_[i].size());
  }
  if (keysize_max != 0) {
    HeterPs_->end_pass();
  }
  current_task_ = nullptr;
  gpu_free_channel_->Put(current_task_);
  timer.Pause();
  VLOG(1) << "EndPass end, cost time: " << timer.ElapsedSec() << "s";
T
Thunderbrook 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const int hidden_size) {
  VLOG(3) << "Begine Gpu Ps PullSparse";
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  auto buf = memory::AllocShared(place, total_length * sizeof(FeatureValue));
  FeatureValue* total_values_gpu = reinterpret_cast<FeatureValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
    auto buf_key = memory::AllocShared(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::AllocShared(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
    cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len, slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);

    this->CopyKeys(place, gpu_keys, total_keys, gpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          static_cast<int>(total_length));
    // PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
    //                              "PullSparseGPU failed in GPUPS."));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GpuPs: PullSparse Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
479
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                  const int table_id,
                                  const std::vector<const uint64_t*>& keys,
                                  const std::vector<const float*>& grad_values,
                                  const std::vector<int64_t>& slot_lengths,
                                  const int hidden_size, const int batch_size) {
  VLOG(3) << "Begin GPUPS PushSparseGrad";
  platform::Timer all_timer;
  platform::Timer push_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  auto buf =
      memory::AllocShared(place, total_length * sizeof(FeaturePushValue));
  FeaturePushValue* total_grad_values_gpu =
      reinterpret_cast<FeaturePushValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GPUPS now."));
  } else if (platform::is_gpu_place(place)) {
    int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to gpups struct";
    this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                      hidden_size, total_length, batch_size);

    VLOG(3) << "Begin call PushSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
    HeterPs_->push_sparse(devid_2_index, total_keys, total_grad_values_gpu,
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GPUPS: PushSparseGrad Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
525
  VLOG(3) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
526 527 528 529 530 531 532 533
          << " s, of which GPUPS cost: " << push_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
}

}  // end namespace framework
}  // end namespace paddle
#endif