test_imperative_basic.py 18.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
21
from paddle.fluid import Linear
M
minqiyang 已提交
22
from test_imperative_base import new_program_scope
23 24


25
class MyLayer(fluid.Layer):
26 27
    def __init__(self):
        super(MyLayer, self).__init__()
28 29

    def forward(self, inputs):
M
minqiyang 已提交
30
        x = fluid.layers.relu(inputs)
31
        self._x_for_debug = x
X
Xin Pan 已提交
32 33 34
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
35 36


37
class MLP(fluid.Layer):
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    def __init__(self, input_size):
        super(MLP, self).__init__()
        self._linear1 = Linear(
            input_size,
            3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
        self._linear2 = Linear(
            3,
            4,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
X
Xin Pan 已提交
54 55

    def forward(self, inputs):
56 57
        x = self._linear1(inputs)
        x = self._linear2(x)
X
Xin Pan 已提交
58 59 60 61
        x = fluid.layers.reduce_sum(x)
        return x


62
class SimpleRNNCell(fluid.Layer):
63 64
    def __init__(self, step_input_size, hidden_size, output_size, param_attr):
        super(SimpleRNNCell, self).__init__()
65 66 67
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
68 69
        self._dtype = core.VarDesc.VarType.FP32
        self.param_attr = param_attr
70 71 72 73

        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
74 75
        self._i2h_w = self.create_parameter(
            attr=self.param_attr,
76 77 78
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
79 80
        self._h2h_w = self.create_parameter(
            attr=self.param_attr,
81 82 83
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
84 85
        self._h2o_w = self.create_parameter(
            attr=self.param_attr,
86 87 88 89 90
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):
91 92 93 94 95 96
        tmp_i2h = self.create_variable(dtype=self._dtype)
        tmp_h2h = self.create_variable(dtype=self._dtype)
        hidden = self.create_variable(dtype=self._dtype)
        out = self.create_variable(dtype=self._dtype)
        softmax_out = self.create_variable(dtype=self._dtype)
        reduce_out = self.create_variable(dtype=self._dtype)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
120
        hidden = self._helper.append_activation(hidden, act='tanh')
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
140
            attrs={'keep_dim': False,
141 142 143 144 145
                   'reduce_all': True})

        return reduce_out, hidden


146
class SimpleRNN(fluid.Layer):
147 148
    def __init__(self):
        super(SimpleRNN, self).__init__()
J
JiabinYang 已提交
149 150 151 152 153 154
        self.seq_len = 4
        self._cell = SimpleRNNCell(
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
155 156

    def forward(self, inputs):
J
JiabinYang 已提交
157
        outs = list()
J
JiabinYang 已提交
158 159
        pre_hiddens = list()

160
        init_hidden = self.create_parameter(
J
JiabinYang 已提交
161 162 163 164 165 166
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
167
        for i in range(self.seq_len):
J
JiabinYang 已提交
168 169 170
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
171 172
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
173

J
JiabinYang 已提交
174
        return outs, pre_hiddens
J
JiabinYang 已提交
175 176


M
minqiyang 已提交
177
class TestImperative(unittest.TestCase):
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    def test_isinstance(self):
        var = fluid.layers.data(shape=[1], name='x', dtype='float32')
        self.assertTrue(isinstance(var, fluid.Variable))
        with fluid.dygraph.guard():
            var_base = fluid.dygraph.base.to_variable(np.array([3, 4, 5]))
            self.assertTrue(isinstance(var_base, core.VarBase))
            self.assertTrue(isinstance(var_base, fluid.Variable))

    def test_create_VarBase(self):
        x = np.ones([2, 2], np.float32)
        y = np.zeros([3, 3], np.float32)
        with fluid.dygraph.guard():
            tmp = fluid.core.VarBase(value=x, place=fluid.core.CPUPlace())
            tmp2 = fluid.core.VarBase(y, fluid.core.CPUPlace())
            tmp3 = fluid.dygraph.base.to_variable(x)
            tmp4 = fluid.core.VarBase(y)
            tmp5 = fluid.core.VarBase(value=x)

            self.assertTrue(np.array_equal(x, tmp.numpy()))
            self.assertTrue(np.array_equal(y, tmp2.numpy()))
            self.assertTrue(np.array_equal(x, tmp3.numpy()))
            self.assertTrue(np.array_equal(y, tmp4.numpy()))
            self.assertTrue(np.array_equal(x, tmp5.numpy()))

M
minqiyang 已提交
202 203
    def test_sum_op(self):
        x = np.ones([2, 2], np.float32)
L
lujun 已提交
204
        with fluid.dygraph.guard():
M
minqiyang 已提交
205 206
            inputs = []
            for _ in range(10):
207 208 209
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs.append(tmp)
M
minqiyang 已提交
210 211
            ret = fluid.layers.sums(inputs)
            loss = fluid.layers.reduce_sum(ret)
L
lujun 已提交
212
            loss.backward()
213 214 215
        with fluid.dygraph.guard():
            inputs2 = []
            for _ in range(10):
216 217 218
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs2.append(tmp)
219 220 221 222 223 224
            ret2 = fluid.layers.sums(inputs2)
            loss2 = fluid.layers.reduce_sum(ret2)
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            loss2.backward(backward_strategy)

225 226
            self.assertTrue(np.allclose(ret.numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0].gradient(), x))
227 228 229
            self.assertTrue(np.allclose(ret2.numpy(), x * 10))
            a = inputs2[0].gradient()
            self.assertTrue(np.allclose(inputs2[0].gradient(), x))
M
minqiyang 已提交
230

231 232 233 234 235 236 237 238 239
    def test_empty_var(self):
        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.numpy()
            except Exception as e:
240
                assert type(e) == core.EnforceNotMet
241 242 243 244

            try:
                new_variable.backward()
            except Exception as e:
245
                assert type(e) == core.EnforceNotMet
246 247 248 249

            try:
                new_variable.clear_gradient()
            except Exception as e:
250
                assert type(e) == core.EnforceNotMet
251 252 253 254 255 256 257 258 259 260 261 262 263

    def test_empty_grad(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            try:
                new_var.gradient()
            except Exception as e:
                assert type(e) == ValueError

            try:
                new_var.clear_gradient()
            except Exception as e:
264
                assert type(e) == core.EnforceNotMet
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.gradient()
            except Exception as e:
                assert type(e) == ValueError

    def test_set_persistable(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            self.assertFalse(new_var.persistable)
            new_var.persistable = True
282
            self.assertTrue(new_var.persistable)
283

M
minqiyang 已提交
284
    def test_layer(self):
L
lujun 已提交
285
        with fluid.dygraph.guard():
M
minqiyang 已提交
286 287
            cl = core.Layer()
            cl.forward([])
288
            l = fluid.Layer("l")
M
minqiyang 已提交
289 290 291 292
            self.assertRaises(NotImplementedError, l.forward, [])

    def test_layer_in_out(self):
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
L
lujun 已提交
293 294
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
295
            var_inp.stop_gradient = False
296
            l = MyLayer()
297
            print(var_inp)
M
minqiyang 已提交
298 299
            x = l(var_inp)[0]
            self.assertIsNotNone(x)
300
            dy_out = x.numpy()
L
lujun 已提交
301
            x.backward()
302
            dy_grad = l._x_for_debug.gradient()
M
minqiyang 已提交
303

304 305
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
306
            var_inp2.stop_gradient = False
307
            l2 = MyLayer()
308 309 310 311 312 313 314 315
            x2 = l2(var_inp2)[0]
            self.assertIsNotNone(x2)
            dy_out2 = x2.numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            x2.backward(backward_strategy)
            dy_grad2 = l2._x_for_debug.gradient()

M
minqiyang 已提交
316 317 318
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
319
            l = MyLayer()
M
minqiyang 已提交
320 321 322 323 324 325 326 327 328 329 330 331
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
332 333
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
334 335 336

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
L
lujun 已提交
337 338
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
339
            mlp = MLP(input_size=2)
M
minqiyang 已提交
340
            out = mlp(var_inp)
341
            dy_out = out.numpy()
L
lujun 已提交
342
            out.backward()
343
            dy_grad = mlp._linear1.weight.gradient()
M
minqiyang 已提交
344

345 346
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
347
            mlp2 = MLP(input_size=2)
348 349 350 351 352
            out2 = mlp2(var_inp2)
            dy_out2 = out2.numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            out2.backward(backward_strategy)
353
            dy_grad2 = mlp2._linear1.weight.gradient()
354

M
minqiyang 已提交
355 356 357
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
358
            mlp = MLP(input_size=2)
M
minqiyang 已提交
359 360
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
361
                out, parameter_list=[mlp._linear1.weight.name])[0]
M
minqiyang 已提交
362 363 364 365 366 367 368 369 370 371
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
372 373
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
374 375

        params = mlp.parameters(True)
376 377 378 379
        self.assertEqual("linear_0.w_0", params[0].name)
        self.assertEqual("linear_0.b_0", params[1].name)
        self.assertEqual("linear_1.w_0", params[2].name)
        self.assertEqual("linear_1.b_0", params[3].name)
M
minqiyang 已提交
380 381 382
        self.assertEqual(len(params), 4)

        sublayers = mlp.sublayers(True)
383 384
        self.assertEqual(mlp._linear1, sublayers[0])
        self.assertEqual(mlp._linear2, sublayers[1])
M
minqiyang 已提交
385 386
        self.assertEqual(len(sublayers), 2)

X
Xin Pan 已提交
387
    def test_dygraph_vs_static(self):
388 389
        np_inp1 = np.random.rand(4, 3, 3)
        np_inp2 = np.random.rand(4, 3, 3)
X
Xin Pan 已提交
390 391 392

        # dynamic graph
        with fluid.dygraph.guard():
393 394 395
            inp1 = fluid.dygraph.to_variable(np_inp1)
            inp2 = fluid.dygraph.to_variable(np_inp2)
            if np.sum(np_inp1) < np.sum(np_inp2):
X
Xin Pan 已提交
396 397 398
                x = fluid.layers.elementwise_add(inp1, inp2)
            else:
                x = fluid.layers.elementwise_sub(inp1, inp2)
L
lujun 已提交
399
            dygraph_result = x.numpy()
X
Xin Pan 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

        # static graph
        with new_program_scope():
            inp_data1 = fluid.layers.data(
                name='inp1', shape=[3, 3], dtype=np.float32)
            inp_data2 = fluid.layers.data(
                name='inp2', shape=[3, 3], dtype=np.float32)

            a = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1])
            b = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1])
            cond = fluid.layers.less_than(x=a, y=b)

            ie = fluid.layers.IfElse(cond)
            with ie.true_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_add(d1, d2)
                ie.output(d3)

            with ie.false_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_sub(d1, d2)
                ie.output(d3)
            out = ie()

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            static_result = exe.run(fluid.default_main_program(),
433 434
                                    feed={'inp1': np_inp1,
                                          'inp2': np_inp2},
X
Xin Pan 已提交
435 436 437
                                    fetch_list=out)[0]
        self.assertTrue(np.allclose(dygraph_result, static_result))

M
minqiyang 已提交
438 439 440 441 442
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
L
lujun 已提交
443 444
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
445
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
446
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
447
            outs, pre_hiddens = simple_rnn.forward(var_inp)
448
            dy_out = outs[3].numpy()
L
lujun 已提交
449
            outs[3].backward()
450 451 452
            dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()
M
minqiyang 已提交
453

454 455 456
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3])
457
            simple_rnn2 = SimpleRNN()
458 459 460 461 462 463 464 465 466
            outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2)
            dy_out2 = outs2[3].numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            outs2[3].backward(backward_strategy)
            dy_grad_h2o2 = simple_rnn2._cell._h2o_w.gradient()
            dy_grad_h2h2 = simple_rnn2._cell._h2h_w.gradient()
            dy_grad_i2h2 = simple_rnn2._cell._i2h_w.gradient()

M
minqiyang 已提交
467 468 469
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
470
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
471 472 473 474 475 476 477 478 479 480
            outs, pre_hiddens = simple_rnn(inp)
            param_grads = fluid.backward.append_backward(outs[3])
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])
481

M
minqiyang 已提交
482 483 484 485
        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
486 487 488 489
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o2, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h2, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h2, static_grad_i2h))
M
minqiyang 已提交
490

491 492 493 494 495 496 497
    def test_layer_attrs(self):
        layer = fluid.dygraph.Layer("test")
        layer.test_attr = 1
        self.assertFalse(hasattr(layer, "whatever"))
        self.assertTrue(hasattr(layer, "test_attr"))
        self.assertEqual(layer.test_attr, 1)

498 499 500

if __name__ == '__main__':
    unittest.main()