conv_mkldnn_op.cc 40.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

Y
Yihua Xu 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
inline void GetWeightsTz(std::vector<int>& weights_tz, int groups,  // NOLINT
                         bool is_conv3d) {
  if (groups > 1) {
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
  }
}

inline mkldnn::memory::format GetWeightsFormat(mkldnn::memory::format format,
                                               int groups, bool is_conv3d) {
  if (is_conv3d) {
    return (groups == 1) ? format : mkldnn::memory::format::goidhw;
  } else {
    return (groups == 1) ? format : mkldnn::memory::format::goihw;
  }
}

72
template <typename T, typename K>
73
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
74 75 76 77
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
78 79 80 81 82 83 84 85
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
      ComputeINT8(ctx);
    }
  }
86

87
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
88 89
    const bool is_test = ctx.Attr<bool>("is_test");

90 91
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
92 93 94 95
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
96
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
97 98
    auto* output = ctx.Output<Tensor>("Output");

99 100 101 102 103 104
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
105
    PADDLE_ENFORCE(input->dims().size() == 4 || input->dims().size() == 5,
Y
Yihua Xu 已提交
106
                   "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
107 108
    PADDLE_ENFORCE(filter->dims().size() == 4 || filter->dims().size() == 5,
                   "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
109 110 111 112 113 114 115
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
116 117 118 119

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
120
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
121
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
122 123
    int groups = ctx.Attr<int>("groups");

124
    bool is_conv3d = strides.size() == 3U;
125
    // TODO(tpatejko): add support for dilation
126
    PADDLE_ENFORCE(
127 128 129 130
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
131 132 133 134 135 136 137 138
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
139
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
140
    GetWeightsTz(weights_tz, g, is_conv3d);
141 142
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

143
    // Get unique name for storing MKLDNN primitives
J
Jacek Czaja 已提交
144
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
145
        src_tz, weights_tz, strides, paddings, dilations, groups,
146
        ctx.op().Input("Input") + ctx.op().Input("Filter"));
147 148 149

    std::vector<primitive> pipeline;

150 151 152 153 154 155 156 157
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
        GetWeightsFormat(filter->format(), g, is_conv3d);

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
158 159 160 161 162

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
163 164 165 166
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

167
    weights_format = mkldnn::memory::format::any;
168 169 170 171 172 173
    // Check the format for user's special output
    if (chosen_memory_format != mkldnn::memory::format::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
174 175
    }

176
    auto src_md = platform::MKLDNNMemDesc(
177
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
178
    auto weights_md = platform::MKLDNNMemDesc(
179
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
180 181
    std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                               // Currently used whenever bias is != nullptr.
182
    auto dst_md = platform::MKLDNNMemDesc(
183
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
184

185 186
    platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);

187
    // create a conv primitive descriptor and save it for usage in backward
188
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
189 190
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
191 192 193 194
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
          bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
195
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
196 197
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
          fuse_relu, fuse_residual_conn, fwd_prop_kind);
198
    } else {
199 200 201
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
          mkldnn_engine, fuse_relu, fuse_residual_conn, fwd_prop_kind);
202
    }
203

204
    // create mkldnn memory from input tensors (data/weights)
205 206
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
207
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
208
        user_weights_md, to_void_cast<T>(filter_data));
209

210 211 212 213 214
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
215 216

    std::shared_ptr<mkldnn::memory> dst_memory_p;
217

218
    if (fuse_residual_conn) {
219 220
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
221

222 223 224 225 226 227
      PADDLE_ENFORCE(
          residual_param_data != nullptr,
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
228

229
      if (residual_param->format() != handler.GetDstFormat()) {
Y
Yu Yang 已提交
230 231 232
        auto output_data = output->mutable_data<T>(
            ctx.GetPlace(), ::paddle::memory::Allocator::kDefault,
            handler.GetDstMemorySize());
233 234 235 236 237 238 239 240 241
        auto residual_data_tz =
            paddle::framework::vectorize2int(residual_param->dims());
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
        auto user_residual_memory_p = handler.AcquireResidualDataMemory(
            user_residual_md, to_void_cast<T>(residual_param_data));
242 243 244

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
245 246
      } else {
        output->ShareDataWith(*residual_param);
247 248 249
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
250
      }
251
    } else {
252 253 254
      auto output_data = output->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault,
          handler.GetDstMemorySize());
255 256
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
257
    }
258 259

    // create convolution op primitive
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
      auto user_bias_memory_p =
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
276 277

    // push primitive to stream and wait until it's executed
278
    pipeline.push_back(*conv_p);
279 280
    stream(stream::kind::eager).submit(pipeline).wait();

281 282
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
283
  }
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(input->dims().size() == 4 || input->dims().size() == 5,
                   "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE(filter->dims().size() == 4 || filter->dims().size() == 5,
                   "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
X
xiaolil1 已提交
318
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
X
xiaolil1 已提交
319
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
X
xiaolil1 已提交
320

321
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
X
xiaolil1 已提交
322 323 324 325
    if (fuse_residual_conn) {
      PADDLE_ENFORCE(force_fp32_output != true,
                     "residual fusion does not support force output with fp32");
    }
326 327 328 329 330 331 332 333 334

    bool is_conv3d = strides.size() == 3U;
    // TODO(tpatejko): add support for dilation
    PADDLE_ENFORCE(
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");
X
xiaolil1 已提交
335

336 337 338 339 340 341 342 343 344 345 346
    PADDLE_ENFORCE(is_conv3d != true, "int8 does not support conv3d currently");

    const T* input_data = input->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    int g = std::max(groups, 1);
    GetWeightsTz(weights_tz, g, is_conv3d);
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
347 348 349 350 351 352 353 354 355 356 357 358
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
    auto dst_dt = fuse_relu ? paddle::framework::ToMKLDNNDataType(
                                  framework::DataTypeTrait<uint8_t>::DataType)
                            : paddle::framework::ToMKLDNNDataType(
                                  framework::DataTypeTrait<int8_t>::DataType);

    if (force_fp32_output) {
      dst_dt = paddle::framework::ToMKLDNNDataType(
          framework::DataTypeTrait<float>::DataType);
    }

X
xiaolil1 已提交
359 360 361 362 363 364
    if (fuse_residual_conn) {
      auto residual = ctx.Input<Tensor>("ResidualData");
      auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
      if (dst_dt != residual_dt) dst_dt = residual_dt;
    }

365 366 367 368 369
    // Get unique name for storing MKLDNN primitives
    std::string key;
    key.reserve(MaxKeyLength);
    platform::ConvMKLDNNHandler::AppendKey(
        &key, src_tz, weights_tz, strides, paddings, dilations, groups, src_dt,
X
xiaolil1 已提交
370
        input->format(), fuse_relu, fuse_residual_conn,
371
        ctx.op().Input("Input") + ctx.op().Input("Filter"));
372 373
    const std::string key_conv_pd = key + "@conv_pd";

X
xiaolil1 已提交
374 375
    bool need_s8_to_u8 = false;

376 377 378 379 380 381 382 383 384 385 386 387 388 389
    std::shared_ptr<mkldnn::convolution_forward> conv_p = nullptr;
    std::shared_ptr<mkldnn::memory> src_memory_p = nullptr;
    std::shared_ptr<mkldnn::memory> user_src_memory_p = nullptr;
    std::shared_ptr<mkldnn::memory> dst_memory_p = nullptr;
    std::vector<primitive> pipeline;
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd =
        nullptr;
    std::shared_ptr<platform::ConvMKLDNNHandler> handler = nullptr;

    auto prim_key = key + "@conv_p";
    auto dst_key = key + "@dst_mem_p";
    auto src_key = key + "@src_mem_p";
    auto user_src_key = key + "@user_src_mem_p";
    auto src_reorder_key = key + "@src_mem_preorder_p";
X
xiaolil1 已提交
390 391
    auto residual_reorder_key = key + "@residual_data_mem_preorder_p";

392 393
    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));
X
xiaolil1 已提交
394

395 396 397
    if (conv_p == nullptr || !is_test) {
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
X
xiaolil1 已提交
398
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
399 400 401
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
X
xiaolil1 已提交
402 403
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              scale_out_data / (scale_in_data * scale_weights_data[i]);
      }

      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? mkldnn::memory::format::oihw
                     : mkldnn::memory::format::goihw);

      /* create memory descriptor for convolution without specified format
      * ('any') which lets a primitive (convolution in this case) choose
      * the memory format preferred for best performance
      */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          platform::data_format_to_memory_format(data_format);

      std::vector<int> bias_tz;

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md =
          platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);
X
xiaolil1 已提交
446

447 448 449 450 451 452 453
      // create a conv primitive descriptor and save it for usage in backward
      if (bias) {
        bias_tz = paddle::framework::vectorize2int(bias->dims());
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               memory::format::x);
        conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                       strides, paddings, mkldnn_engine,
X
xiaolil1 已提交
454 455
                                       fuse_relu, fuse_residual_conn,
                                       output_shift_scale, sum_scale, is_test);
456
      } else {
X
xiaolil1 已提交
457 458 459 460
        conv_pd =
            ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                 mkldnn_engine, fuse_relu, fuse_residual_conn,
                                 output_shift_scale, sum_scale, is_test);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
      }
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx.SetBlob(key_conv_pd, conv_pd);

      handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                    mkldnn_engine, key));

      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

X
xiaolil1 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
              paddle::framework::vectorize2int(residual_param->dims());

          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());

          if (residual_dt == mkldnn::memory::data_type::u8) {
            dst_memory_p = platform::SetDstMemory<uint8_t>(
                ctx, output, residual_param, user_residual_md, handler,
                &pipeline);
          } else {
            need_s8_to_u8 = fuse_relu;
            dst_memory_p = platform::SetDstMemory<int8_t>(
                ctx, output, residual_param, user_residual_md, handler,
                &pipeline);
          }
        } else {
          output->ShareDataWith(*residual_param);
          if (residual_dt == mkldnn::memory::data_type::u8) {
            dst_memory_p =
                platform::SetDstMemory<uint8_t>(ctx, output, handler);
          } else {
            need_s8_to_u8 = fuse_relu;
            dst_memory_p = platform::SetDstMemory<int8_t>(ctx, output, handler);
          }
        }
      } else if (!force_fp32_output) {
X
xiaolil1 已提交
520 521 522 523 524
        if (fuse_relu) {
          dst_memory_p = platform::SetDstMemory<uint8_t>(ctx, output, handler);
        } else {
          dst_memory_p = platform::SetDstMemory<int8_t>(ctx, output, handler);
        }
525 526 527 528 529 530 531
      } else {
        dst_memory_p = platform::SetDstMemory<float>(ctx, output, handler);
      }

      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
      if (bias) {
X
xiaolil1 已提交
532
        const K* bias_data = bias->data<K>();
533
        auto user_bias_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
534
            {bias_tz}, platform::MKLDNNGetDataType<K>(), memory::format::x);
535
        auto user_bias_memory_p = handler->AcquireBiasMemory(
X
xiaolil1 已提交
536
            user_bias_md, to_void_cast<K>(bias_data));
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             dst_memory_p);
      }

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
    } else {
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }

      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
X
xiaolil1 已提交
582 583 584 585 586 587 588 589 590 591

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        output->ShareDataWith(*residual_param);
        if (residual_dt == mkldnn::memory::data_type::u8) {
          platform::SetDstMemoryHandler<uint8_t>(ctx, output, handler,
                                                 &dst_memory_p);
        } else {
592
          need_s8_to_u8 = fuse_relu;
X
xiaolil1 已提交
593 594 595 596
          platform::SetDstMemoryHandler<int8_t>(ctx, output, handler,
                                                &dst_memory_p);
        }
      } else if (!force_fp32_output) {
X
xiaolil1 已提交
597
        if (fuse_relu) {
X
xiaolil1 已提交
598 599
          platform::SetDstMemoryHandler<uint8_t>(ctx, output, handler,
                                                 &dst_memory_p);
X
xiaolil1 已提交
600
        } else {
X
xiaolil1 已提交
601 602
          platform::SetDstMemoryHandler<int8_t>(ctx, output, handler,
                                                &dst_memory_p);
X
xiaolil1 已提交
603
        }
604
      } else {
X
xiaolil1 已提交
605 606
        platform::SetDstMemoryHandler<float>(ctx, output, handler,
                                             &dst_memory_p);
607
      }
X
xiaolil1 已提交
608

609 610 611
      if (src_memory_reorder_p) {
        pipeline.push_back(*src_memory_reorder_p);
      }
X
xiaolil1 已提交
612 613 614 615 616 617 618

      auto residual_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
        pipeline.push_back(*residual_reorder_p);
      }

619 620 621 622 623
      pipeline.push_back(*conv_p);
    }
    // push primitive to stream and wait until it's executed
    stream(stream::kind::eager).submit(pipeline).wait();

X
xiaolil1 已提交
624 625 626 627
    if (need_s8_to_u8) {
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }

628 629 630
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
631

632
 private:
633
  mkldnn::primitive_attr CreatePostOps(
X
xiaolil1 已提交
634 635
      bool fuse_relu, bool fuse_residual_conn,
      const std::vector<float> output_shift_scale, float sum_scale) const {
636 637 638 639
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
    conv_attr.set_output_scales(mask, output_shift_scale);
X
xiaolil1 已提交
640 641 642
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
X
xiaolil1 已提交
643 644 645 646 647 648 649
    if (fuse_relu) {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 1.0f;  // beta
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }
650 651 652 653 654 655 656 657
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& dst, const std::vector<int>& strides,
                       const std::vector<int>& paddings,
X
xiaolil1 已提交
658
                       const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
659
                       const bool fuse_residual_conn,
660
                       const std::vector<float> output_shift_scale,
X
xiaolil1 已提交
661
                       const float sum_scale, bool is_test) const {
662 663 664 665 666 667 668 669 670 671
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

    auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                               : mkldnn::prop_kind::forward_training;

    auto conv_desc = mkldnn::convolution_forward::desc(
        propagation, mkldnn::convolution_direct, src, weights, dst, stride_dims,
        padding_dims, padding_dims, mkldnn::padding_kind::zero);

X
xiaolil1 已提交
672 673
    mkldnn::primitive_attr conv_attr = CreatePostOps(
        fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
674 675 676 677 678 679 680 681 682 683 684 685 686

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& bias, const memory::desc& dst,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
X
xiaolil1 已提交
687
                       const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
688
                       const bool fuse_residual_conn,
689
                       const std::vector<float> output_shift_scale,
X
xiaolil1 已提交
690
                       const float sum_scale, bool is_test) const {
691 692 693 694 695 696 697 698 699 700
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

    auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                               : mkldnn::prop_kind::forward_training;

    auto conv_desc = mkldnn::convolution_forward::desc(
        propagation, mkldnn::convolution_direct, src, weights, bias, dst,
        stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);

X
xiaolil1 已提交
701 702
    mkldnn::primitive_attr conv_attr = CreatePostOps(
        fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
703 704 705 706 707 708 709

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }
710 711 712
};

template <typename T>
713
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
714 715 716 717 718
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

719 720
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
721 722 723 724 725 726 727 728 729
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

730 731 732 733 734 735 736 737 738 739
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

740 741 742 743
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

744 745 746 747
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
748 749
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
750

751
    bool is_conv3d = strides.size() == 3U;
752 753 754 755 756 757 758 759 760
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
761
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
762
    GetWeightsTz(weights_tz, g, is_conv3d);
763 764
    std::vector<int> dst_tz =
        paddle::framework::vectorize2int(output_grad->dims());
765

766 767
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
Y
Yihua Xu 已提交
768
        GetWeightsFormat(filter->format(), g, is_conv3d);
769

770
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
771
    // as well as attributes of primitive to be created
772
    // This name will be used as key when saving info into device context
J
Jacek Czaja 已提交
773 774
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
775
        ctx.op().Input("Input") + ctx.op().Input("Filter"));
776 777

    const std::string key_conv_pd = key + "@conv_pd";
778
    std::vector<primitive> pipeline;
779

780 781
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
782
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
783
    auto user_weights_md = platform::MKLDNNMemDesc(
784
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
785 786
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
787 788 789 790 791

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
792 793 794 795
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

796 797 798 799 800 801 802
    weights_format = mkldnn::memory::format::any;
    // Check the format for user's special output
    if (chosen_memory_format != mkldnn::memory::format::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
803 804
    }

805
    auto src_md = platform::MKLDNNMemDesc(
806
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
807
    auto diff_src_md = platform::MKLDNNMemDesc(
808
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
809
    auto weights_md = platform::MKLDNNMemDesc(
810
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
811
    auto diff_weights_md = platform::MKLDNNMemDesc(
812
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
813
    auto diff_dst_md = platform::MKLDNNMemDesc(
814
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
815

816
    // Retrieve conv_pd from device context
817 818 819
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
820 821 822
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
839 840 841
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
842 843 844 845 846 847 848 849 850

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

851 852
    // create backward conv primitive for weights
    if (filter_grad) {
853 854
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
855

856 857 858 859
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

860
      const size_t size = handler.GetDiffWeightsMemorySize();
Y
Yu Yang 已提交
861 862
      filter_grad_data = filter_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
863

864 865 866 867 868 869 870 871 872
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
873

874 875
      filter_grad->set_layout(DataLayout::kMKLDNN);
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
876 877 878
    }

    if (input_grad) {
879 880 881 882 883 884 885
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

886
      const size_t size = handler.GetDiffSourceMemorySize();
Y
Yu Yang 已提交
887 888
      input_grad_data = input_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
889

890 891 892 893 894 895 896
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
897

898 899
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
900
    }
901
    stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
902
  }
903 904 905 906 907 908 909
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
910 911 912
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
913 914 915 916
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
917
                                    ops::kConvMKLDNNINT8,
918 919 920 921
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
922
                                    ops::kConvMKLDNNINT8,
923
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
924 925 926 927 928

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
929 930 931 932

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
933
                                    ops::ConvMKLDNNOpKernel<float, float>);
934 935 936 937 938

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);