multi_devices_graph_pass.cc 39.7 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduo 已提交
14
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
C
chengduoZH 已提交
15
#include <algorithm>
Y
Yancey1989 已提交
16
#include <fstream>
Q
Qiao Longfei 已提交
17
#include <memory>
C
chengduoZH 已提交
18
#include <string>
Q
Qiao Longfei 已提交
19 20
#include <unordered_map>
#include <unordered_set>
C
chengduoZH 已提交
21
#include <utility>
C
chengduoZH 已提交
22
#include <vector>
23
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
24
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
25
#include "paddle/fluid/framework/details/computation_op_handle.h"
W
Wu Yi 已提交
26
#include "paddle/fluid/framework/details/fetch_barrier_op_handle.h"
27
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
C
chengduoZH 已提交
28
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
29
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
better  
Xin Pan 已提交
31
#include "paddle/fluid/framework/ir/graph_helper.h"
X
Xin Pan 已提交
32
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
33
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
34
#include "paddle/fluid/framework/scope.h"
35
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
36

G
gongweibao 已提交
37 38 39 40
#if defined(PADDLE_WITH_DGC)
#include "paddle/fluid/framework/details/sparse_all_reduce_op_handle.h"
#endif

Y
Yu Yang 已提交
41 42 43
namespace paddle {
namespace framework {
namespace details {
X
Xin Pan 已提交
44

X
Xin Pan 已提交
45
namespace {
X
Xin Pan 已提交
46
// TODO(panyx0718): Clean this up as well.
X
Xin Pan 已提交
47 48 49 50 51
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef std::vector<OpHandleBase *> GraphOps;
const char kGraphOps[] = "ops";

C
chengduo 已提交
52 53 54 55 56 57
bool OpHaveRole(const ir::Node &node, const framework::OpRole &role) {
  return boost::get<int>(
             node.Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
         static_cast<int>(role);
}

X
Xin Pan 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
void PolishGraphToSupportDataHazards(ir::Graph *graph) {
  for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
    for (auto &name_pair : var_map) {
      if (name_pair.second.size() <= 1) {
        continue;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        OpHandleBase *write_op = (*it_new)->GeneratedOp();
        const auto &read_ops = (*it_old)->PendingOps();

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
          bool has_dep = false;
          for (auto *r_out : read_op->Outputs()) {
            for (auto *w_in : write_op->Inputs()) {
              if (r_out->Node() == w_in->Node()) {
                has_dep = true;
                break;
              }
            }
          }
          if (has_dep) continue;

          auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
          read_op->AddOutput(dep_var);
          write_op->AddInput(dep_var);
          graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        }
      }
    }
  }
}

VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
                                      const platform::Place &place,
                                      size_t place_offset) {
  auto &var_holders = graph->Get<GraphVars>(kGraphVars)[place_offset];
  auto &var_holder = var_holders[node->Name()];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    if (node->Var()) {
      var = new VarHandle(graph->CreateVarNode(node->Var()), 0, place_offset,
                          node->Name(), place);
    } else {
      var = new VarHandle(
          graph->CreateEmptyNode(node->Name(), ir::Node::Type::kVariable), 0,
          place_offset, node->Name(), place);
    }
    var_holder.emplace_back(var);
  } else {
X
clean1  
Xin Pan 已提交
115
    var = *var_holder.rbegin();
X
Xin Pan 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
  }
  return var;
}

void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
                    ir::Node *new_node, const platform::Place &place,
                    size_t place_offset) {
  auto &vars =
      graph->Get<GraphVars>(kGraphVars)[place_offset][new_node->Name()];
  size_t version = vars.size();
  auto var =
      new VarHandle(new_node, version, place_offset, new_node->Name(), place);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
}

void AddOutputToLeafOps(ir::Graph *graph) {
  for (auto &op : graph->Get<GraphOps>(kGraphOps)) {
    if (!op->Outputs().empty()) {
      continue;
    }
    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    op->AddOutput(dummy_leaf);
  }
}
}  // namespace
Y
Yu Yang 已提交
143

C
chengduo 已提交
144 145
void MultiDevSSAGraphBuilderBase::CheckGraph(const ir::Graph &graph) const {}

146
void MultiDevSSAGraphBuilderBase::Init() const {
X
clean  
Xin Pan 已提交
147 148
  all_vars_.clear();

X
Xin Pan 已提交
149
  loss_var_name_ = Get<const std::string>(kLossVarName);
C
chengduo 已提交
150
  VLOG(10) << "Init MultiDevSSAGraphBuilder, loss name: " << loss_var_name_;
X
Xin Pan 已提交
151 152 153
  places_ = Get<const std::vector<platform::Place>>(kPlaces);
  local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
  strategy_ = Get<const BuildStrategy>(kStrategy);
P
peizhilin 已提交
154
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
155
  nccl_ctxs_ = &Get<platform::NCCLContextMap>(kNCCLCtxs);
Y
Yu Yang 已提交
156
#endif
C
chengduo 已提交
157
  PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
Y
Yu Yang 已提交
158 159
}

160
void MultiDevSSAGraphBuilderBase::ApplyImpl(ir::Graph *graph) const {
X
Xin Pan 已提交
161
  Init();
C
chengduo 已提交
162
  CheckGraph(*graph);
163
  std::vector<ir::Node *> sorted_ops = SortOperations(*graph);
C
chengduo 已提交
164

X
Xin Pan 已提交
165 166
  auto nodes = graph->ReleaseNodes();
  ir::Graph &result = *graph;
167 168

  for (auto &node : nodes) {
X
Xin Pan 已提交
169
    if (node->IsVar() && node->Var()) {
X
Xin Pan 已提交
170
      all_vars_.emplace(node->Name(), node->Var());
171
    }
C
fix ci  
chengduoZH 已提交
172
  }
Y
Yu Yang 已提交
173 174

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
175 176 177
  result.Set(kGraphVars, new GraphVars(places_.size()));
  result.Set(kGraphDepVars, new GraphDepVars);
  result.Set(kGraphOps, new GraphOps);
178

Y
Yu Yang 已提交
179
  bool is_forwarding = true;
X
Xin Pan 已提交
180

X
better  
Xin Pan 已提交
181
  for (ir::Node *node : sorted_ops) {
182 183
    if (DealWithSpecialOp(&result, node)) {
      continue;
Y
Yu Yang 已提交
184
    } else {
185 186 187 188 189 190 191 192 193
      // This op runs on all devices
      if (IsScaleLossOp(node)) {
        // user can customize loss@grad if not use_default_grad_scale_
        InsertScaleLossGradOp(&result, node);
        // This assumes the backward generating code will ensure IsScaleLossOp
        // is true only for the op that scale the final scalar loss.
        // It also assumes backward op will always follow the forward op in
        // the block.
        is_forwarding = false;
C
chengduo 已提交
194
      } else {
195 196
        CreateComputationalOps(&result, node, places_.size());
      }
197

W
Wu Yi 已提交
198 199
      // Insert collective ops if nranks > 1
      if (!is_forwarding && Get<size_t>(kNRanks) > 1) {
200
        try {
C
chengduo 已提交
201 202 203 204
          bool is_bk_op =
              static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward));
205 206
          // optimize op is already processed in DealWithSpecialOp,
          // here we only consider backward op
C
chengduo 已提交
207
          if (!is_bk_op) continue;
208

209 210 211 212 213 214 215 216 217 218 219 220
          /*
           * the op that will generate the gradient of on parameter will have
           one attr op_role_var
           * to record the parameter and gradient, like:
            attrs {
              name: "op_role_var"
              type: STRINGS
              strings: "fc_1.b_0"
              strings: "fc_1.b_0@GRAD"
            }
           */

C
chengduo 已提交
221 222
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
223 224 225 226 227 228 229
          auto backward_vars =
              boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                  OpProtoAndCheckerMaker::OpRoleVarAttrName()));
          PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
          for (size_t i = 0; i < backward_vars.size(); i += 2) {
            auto &p_name = backward_vars[i];
            auto &g_name = backward_vars[i + 1];
230 231
            VLOG(10) << "Bcast " << g_name << " for parameter " << p_name
                     << " op_type " << node->Op()->Type();
W
Wu Yi 已提交
232 233 234
            if (NeedCollectiveForGrad(g_name, sorted_ops)) {
              InsertCollectiveOp(&result, p_name, g_name);
            }
Y
Yu Yang 已提交
235
          }
236
        } catch (boost::bad_get e) {
Y
Yu Yang 已提交
237 238 239 240
        }
      }
    }
  }
241

242 243
  InsertPostprocessOps(&result);

Y
Yu Yang 已提交
244
  /*
X
Xin Pan 已提交
245 246
  Dependency graph has been constructed. However, there are still data
  hazards need to be handled.
247
  */
Y
Yu Yang 已提交
248
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
249

Y
Yu Yang 已提交
250 251 252 253
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
C
chengduo 已提交
254

F
flame 已提交
255
  result.Erase(kGraphOps);
Y
Yu Yang 已提交
256 257
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
void MultiDevSSAGraphBuilderBase::InsertScaleLossGradOp(
    ir::Graph *result, const ir::Node *node) const {
  // user can customize loss@grad if not use_default_grad_scale_
  size_t loss_scale = 0;
  switch (this->strategy_.gradient_scale_) {
    case BuildStrategy::GradientScaleStrategy::kOne:
      loss_scale = 1;
      break;
    case BuildStrategy::GradientScaleStrategy::kCoeffNumDevice:
      loss_scale = Get<size_t>(kNRanks);
      break;
    case BuildStrategy::GradientScaleStrategy::kCustomized:
      loss_scale = 0;
      break;
    default:
      LOG(FATAL) << "Unknown gradient scale strategy.";
      break;
  }

Q
Qiao Longfei 已提交
277 278
  VLOG(3) << "loss_scale: " << loss_scale;

279 280 281 282 283 284 285 286
  if (loss_scale) {
    // TODO(paddle-dev): Why is there no input for this op_handle?
    auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
    auto out_dtype = this->all_vars_.at(loss_grad_name)->GetDataType();
    this->CreateScaleLossGradOp(result, loss_grad_name, node->outputs[0],
                                loss_scale, out_dtype);
  }
}
C
chengduo 已提交
287

C
chengduo 已提交
288 289 290 291 292
bool MultiDevSSAGraphBuilderBase::DealWithSpecialOp(ir::Graph *result,
                                                    ir::Node *node) const {
  return false;
}

293 294 295 296
std::vector<ir::Node *> MultiDevSSAGraphBuilderBase::SortOperations(
    const ir::Graph &graph) const {
  return ir::TopologySortOperations(graph);
}
C
chengduo 已提交
297

298 299 300 301 302 303 304
bool MultiDevSSAGraphBuilderBase::UseGPU() const {
  bool use_gpu = false;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
  use_gpu = nccl_ctxs_ != nullptr;
#endif
  return use_gpu;
}
C
chengduo 已提交
305

W
Wu Yi 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319
bool MultiDevSSAGraphBuilderBase::NeedCollectiveForGrad(
    const std::string &grad_name, std::vector<ir::Node *> ops) const {
  // if we have allreduce_op for current gradient variable in the graph,
  // then we don't need to add allreduce_op_handle for this gradient
  // NOTE: This is for the case that all gradients should add collective ops
  for (auto *node : ops) {
    if (node->Op()->Type() != "allreduce") continue;
    for (auto in_name : node->Op()->InputArgumentNames()) {
      if (in_name == grad_name) {
        return false;
      }
    }
  }
  return true;
C
chengduo 已提交
320 321
}

322 323 324
void MultiDevSSAGraphBuilderBase::CreateOpHandleIOs(ir::Graph *result,
                                                    ir::Node *node,
                                                    size_t place_id) const {
C
chengduo 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
  auto p = places_[place_id];
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));

  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
    op_handle->AddInput(var);
  }

  for (ir::Node *output : node->outputs) {
    ir::Node *new_node = nullptr;
    if (output->Var()) {
      new_node = result->CreateVarNode(output->Var());
    } else {
      new_node =
          result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
    }
    CreateOpOutput(result, op_handle, new_node, p, place_id);
  }
}

347
void MultiDevSSAGraphBuilderBase::SetCommunicationContext(
348
    OpHandleBase *op_handle, const platform::Place &p) const {
P
peizhilin 已提交
349
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
350 351 352 353 354 355 356 357 358 359
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

360 361 362
void MultiDevSSAGraphBuilderBase::CreateBroadcastOp(ir::Graph *result,
                                                    const std::string &p_name,
                                                    size_t src_dev_id) const {
P
peizhilin 已提交
363
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
polish  
Xin Pan 已提交
364 365 366
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
367
#else
X
polish  
Xin Pan 已提交
368 369 370
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
C
chengduoZH 已提交
371
#endif
X
Xin Pan 已提交
372
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
X
Xin Pan 已提交
373

X
Xin Pan 已提交
374
  auto *in =
X
clean1  
Xin Pan 已提交
375
      result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back();
C
chengduoZH 已提交
376 377 378 379
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
380
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
381
    auto &vars = result->Get<GraphVars>(kGraphVars).at(i).at(p_name);
X
polish  
Xin Pan 已提交
382 383 384
    auto *out_var = new VarHandle(
        result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), vars.size(),
        i, p_name, p);
C
chengduoZH 已提交
385 386 387 388 389
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

390
void MultiDevSSAGraphBuilderBase::CreateFusedBroadcastOp(
391 392
    ir::Graph *result,
    const std::vector<std::unordered_set<std::string>> &bcast_varnames) const {
P
peizhilin 已提交
393
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
#endif
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
  }

  for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) {
    for (auto &p_name : bcast_varnames[dev_id]) {
      auto *in =
X
clean1  
Xin Pan 已提交
412
          result->Get<GraphVars>(kGraphVars).at(dev_id).at(p_name).back();
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
      op_handle->AddInput(in);
      for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) {
        auto &p = places_[out_dev_id];
        auto &vars =
            result->Get<GraphVars>(kGraphVars).at(out_dev_id).at(p_name);
        auto *out_var = new VarHandle(
            result->CreateEmptyNode(p_name, ir::Node::Type::kVariable),
            vars.size(), out_dev_id, p_name, p);
        vars.emplace_back(out_var);
        op_handle->AddOutput(out_var);
      }
    }
  }
}

428 429
void MultiDevSSAGraphBuilderBase::CreateComputationalOp(ir::Graph *result,
                                                        ir::Node *node,
430
                                                        size_t dev_id) const {
X
Xin Pan 已提交
431
  result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
432
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
S
sneaxiy 已提交
433
                              local_scopes_[dev_id], places_[dev_id], dev_id));
434
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
435 436
}

437 438 439
void MultiDevSSAGraphBuilderBase::CreateAllReduceOp(ir::Graph *result,
                                                    const std::string &og,
                                                    bool is_encoded) const {
Y
Yancey1989 已提交
440 441 442
  OpHandleBase *op_handle = nullptr;

  auto append_allreduce_op = [&](
Y
Yancey1989 已提交
443 444
      const std::vector<Scope *> &scopes,
      const std::vector<platform::Place> &places) -> OpHandleBase * {
G
gongweibao 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457
#if defined(PADDLE_WITH_DGC)
    if (is_encoded) {
      result->Get<GraphOps>(kGraphOps).emplace_back(new SparseAllReduceOpHandle(
          result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
          scopes, places, nccl_ctxs_, is_encoded,
          static_cast<int>(strategy_.trainers_endpoints_.size()) *
              places_.size()));
    } else {
      result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
          result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
          scopes, places, nccl_ctxs_));
    }
#elif defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
458 459
    result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
        result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
G
gongweibao 已提交
460
        scopes, places, nccl_ctxs_));
C
chengduoZH 已提交
461
#else
Y
Yancey1989 已提交
462 463 464
    result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
        result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
        scopes, places));
C
chengduoZH 已提交
465
#endif
Y
Yancey1989 已提交
466 467 468 469 470
    return result->Get<GraphOps>(kGraphOps).back();
  };

  if (!strategy_.enable_parallel_graph_)
    op_handle = append_allreduce_op(local_scopes_, places_);
Y
Yu Yang 已提交
471 472

  for (size_t i = 0; i < places_.size(); ++i) {
Y
Yancey1989 已提交
473 474 475
    if (strategy_.enable_parallel_graph_) {
      op_handle = append_allreduce_op({local_scopes_[i]}, {places_[i]});
    }
Y
Yancey1989 已提交
476

Y
Yancey1989 已提交
477
    SetCommunicationContext(op_handle, places_[i]);
X
Xin Pan 已提交
478
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
Y
Yu Yang 已提交
479 480
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
481
    op_handle->AddInput(prev_grad);
482
    VLOG(10) << "all_reduce_op_handle add input " << prev_grad->DebugString();
Y
Yu Yang 已提交
483

X
Xin Pan 已提交
484
    auto var =
X
polish  
Xin Pan 已提交
485
        new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
Y
Yancey1989 已提交
486
                      vars.size(), i, og, places_[i]);
Y
Yu Yang 已提交
487 488
    vars.emplace_back(var);
    op_handle->AddOutput(var);
489 490
    VLOG(10) << "all_reduce_op_handle add output " << og
             << ", handle:" << var->DebugString();
Y
Yu Yang 已提交
491 492 493
  }
}

494
void MultiDevSSAGraphBuilderBase::CreateScaleLossGradOp(
495
    ir::Graph *result, const std::string &loss_grad_name,
496 497
    ir::Node *out_var_node, size_t loss_scale,
    proto::VarType::Type dtype) const {
Y
Yu Yang 已提交
498
  for (size_t i = 0; i < places_.size(); ++i) {
Y
yuyang18 已提交
499
    auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
X
Xin Pan 已提交
500
    auto *op_handle = new ScaleLossGradOpHandle(
X
polish  
Xin Pan 已提交
501
        result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
502
        loss_scale, local_scopes_[i], places_[i], dev_ctx, dtype);
X
Xin Pan 已提交
503
    result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
Y
Yu Yang 已提交
504 505 506 507 508 509 510

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

511 512
    CreateOpOutput(result, op_handle,
                   result->CreateVarNode(out_var_node->Var()), places_[i], i);
Y
Yu Yang 已提交
513 514 515
  }
}

516 517
void MultiDevSSAGraphBuilderBase::CreateComputationalOps(
    ir::Graph *result, ir::Node *node, size_t num_places) const {
T
typhoonzero 已提交
518
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
519 520
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
S
sneaxiy 已提交
521 522
    result->Get<GraphOps>(kGraphOps).emplace_back(new ComputationOpHandle(
        result->CreateOpNode(node->Op()), s, p, scope_idx));
523
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
524 525 526
  }
}

527 528
VarHandle *MultiDevSSAGraphBuilderBase::CreateReduceOp(
    ir::Graph *result, const std::string &og, size_t dst_dev_id) const {
P
peizhilin 已提交
529
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
530
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
531 532
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
533
#else
X
Xin Pan 已提交
534
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
535 536
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
537
#endif
X
clean1  
Xin Pan 已提交
538
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
C
chengduoZH 已提交
539 540 541

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
542
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
543
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
C
chengduoZH 已提交
544 545
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
546
    op_handle->AddInput(prev_grad);
C
chengduoZH 已提交
547
  }
X
Xin Pan 已提交
548
  auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
X
polish  
Xin Pan 已提交
549 550 551
  auto var =
      new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                    vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
552 553 554 555 556
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

557
bool MultiDevSSAGraphBuilderBase::IsScaleLossOp(ir::Node *node) const {
C
chengduo 已提交
558 559
  return !loss_var_name_.empty() && node->Op() &&
         boost::get<int>(
560 561
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
             (static_cast<int>(OpRole::kBackward) |
C
chengduo 已提交
562
              static_cast<int>(OpRole::kLoss));
563 564 565 566 567
}

bool MultiDevSSAGraphBuilderBase::IsSparseGradient(
    const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
C
chengduo 已提交
568
  return all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS;
569 570 571 572 573 574 575 576 577
}

void AllReduceSSAGraphBuilder::InsertCollectiveOp(
    ir::Graph *result, const std::string &p_name,
    const std::string &g_name) const {
  if (IsSparseGradient(g_name)) {
    CreateReduceOp(result, g_name, 0);
    CreateBroadcastOp(result, g_name, 0);
  } else {
G
gongweibao 已提交
578 579 580
#if defined(PADDLE_WITH_DGC)
    CreateAllReduceOp(result, g_name, IsEncoded(p_name));
#else
581
    CreateAllReduceOp(result, g_name);
G
gongweibao 已提交
582
#endif
583
  }
584
}
585

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
int BalanceVarSSAGraphBuilder::GetVarDeviceID(
    const std::string &varname) const {
  auto got = sharded_var_device_.find(varname);
  if (got == sharded_var_device_.end()) {
    auto pos = varname.find(framework::kNewGradSuffix);
    if (pos != std::string::npos) {
      got = sharded_var_device_.find(varname.substr(0, pos));
    }
  }
  return got == sharded_var_device_.end() ? -1 : got->second;
}

int BalanceVarSSAGraphBuilder::GetOpDeviceID(ir::Node *node) const {
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
    return -1;
  }
  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
    return -1;
  }
  auto param_grad = boost::get<std::vector<std::string>>(
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1]);
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
                    node->Op()->Type(), param_grad[0], param_grad[1]);
  return dev_id;
}

size_t BalanceVarSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
    if (all_vars_.find(var_name) == all_vars_.end()) continue;
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

void BalanceVarSSAGraphBuilder::ResetState() const {
  balance_vars_.clear();
  sharded_var_device_.clear();

  balance_vars_.resize(places_.size(), 0);
}

void ReduceSSAGraphBuilder::Init() const {
  MultiDevSSAGraphBuilderBase::Init();
  ResetState();
}

void ReduceSSAGraphBuilder::ResetState() const {
  BalanceVarSSAGraphBuilder::ResetState();
  bcast_var_name_set_.clear();
  bcast_var_name_set_.resize(places_.size());
}

void ReduceSSAGraphBuilder::InsertCollectiveOp(
    ir::Graph *result, const std::string &p_name,
    const std::string &g_name) const {
  size_t cur_device_id = GetAppropriateDeviceID({g_name});
  CreateReduceOp(result, g_name, cur_device_id);
  sharded_var_device_.emplace(g_name, cur_device_id);
  bcast_var_name_set_[cur_device_id].emplace(p_name);
}

bool ReduceSSAGraphBuilder::DealWithSpecialOp(ir::Graph *result,
                                              ir::Node *node) const {
  int op_dev_id = BalanceVarSSAGraphBuilder::GetOpDeviceID(node);
  if (op_dev_id != -1) {
    // This op only runs on one specific device.
    CreateComputationalOp(result, node, op_dev_id);
    for (ir::Node *n : node->outputs) {
      sharded_var_device_.emplace(n->Name(), op_dev_id);
    }
    return true;
  }
  return false;
}

void ReduceSSAGraphBuilder::InsertPostprocessOps(ir::Graph *result) const {
  if (UseGPU()) {
679
    if (strategy_.fuse_broadcast_ops_) {
680 681 682 683 684 685 686
      CreateFusedBroadcastOp(result, bcast_var_name_set_);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set_.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set_[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(result, bcast_name, dev_id);
        }
Y
Yancey1989 已提交
687 688
      }
    }
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
  }
}

int ReduceSSAGraphBuilder::GetOpDeviceID(
    ir::Node *node,
    std::unordered_map<std::string, std::vector<ir::Node *>> *delay_ops) const {
  if (!OpHaveRole(*node, framework::OpRole::kOptimize)) {
    return -1;
  }

  auto param_grad = boost::get<std::vector<std::string>>(
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
  int dev_id = GetVarDeviceID(param_grad[1]);

  if (dev_id == -1) {
    (*delay_ops)[param_grad[1]].push_back(node);
    return -2;
  }
  return dev_id;
}

std::vector<ir::Node *> ReduceSSAGraphBuilder::SortOperations(
    const ir::Graph &graph) const {
  std::vector<ir::Node *> sorted_ops = ir::TopologySortOperations(graph);
  return SortForReduceMode(sorted_ops);
}

std::vector<ir::Node *> ReduceSSAGraphBuilder::SortForReduceMode(
    const std::vector<ir::Node *> &topo_ops) const {
  std::vector<ir::Node *> sorted_ops;
  std::unordered_map<std::string, std::vector<ir::Node *>> delayed_op;
  sorted_ops.reserve(topo_ops.size());
  ResetState();

  auto insert_delayed_op = [&](const std::string &var_name, int dev_id) {
    sharded_var_device_.emplace(var_name, dev_id);
    if (delayed_op.count(var_name)) {
      auto &ops = delayed_op.at(var_name);
      sorted_ops.insert(sorted_ops.end(), ops.begin(), ops.end());
      delayed_op.at(var_name).clear();
Y
Yancey1989 已提交
731
    }
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
  };

  for (ir::Node *node : topo_ops) {
    int op_dev_id = GetOpDeviceID(node, &delayed_op);
    if (op_dev_id > -1) {
      // This op only runs on one specific device.
      sorted_ops.emplace_back(node);
      for (ir::Node *n : node->outputs) {
        insert_delayed_op(n->Name(), op_dev_id);
      }
    } else if (op_dev_id == -1) {
      // This op runs on all devices, and its output may have parameter's
      // gradients.
      sorted_ops.emplace_back(node);
      bool is_bk_op =
          static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
                                OpProtoAndCheckerMaker::OpRoleAttrName())) &
                            static_cast<int>(OpRole::kBackward));
      if (!is_bk_op) continue;
      // Currently, we assume that once gradient is generated, it can be
      // broadcast, and each gradient is only broadcast once.
      std::vector<std::string> backward_vars;
      try {
        backward_vars =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      } catch (boost::bad_get e) {
      }
      PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);

      for (size_t i = 0; i < backward_vars.size(); i += 2) {
        auto &g_name = backward_vars[i + 1];
        size_t cur_device_id = GetAppropriateDeviceID({g_name});
        insert_delayed_op(g_name, static_cast<int>(cur_device_id));
      }
    } else if (op_dev_id == -2) {
      // The Op on which the Op depends has not yet been generated.
Y
yi.wu 已提交
769
    }
Y
Yancey1989 已提交
770 771
  }

772
  PADDLE_ENFORCE_EQ(sorted_ops.size(), topo_ops.size());
Y
Yancey1989 已提交
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
  ResetState();
  return sorted_ops;
}

void DistSSAGraphBuilder::Init() const {
  MultiDevSSAGraphBuilderBase::Init();
  ResetState();
}

void DistSSAGraphBuilder::ResetState() const {
  BalanceVarSSAGraphBuilder::ResetState();
  bcast_var_name_set_.clear();
  bcast_var_name_set_.resize(places_.size());
}

bool DistSSAGraphBuilder::DealWithSpecialOp(ir::Graph *result,
                                            ir::Node *node) const {
  bool insert_op = false;
  if (OpHaveRole(*node, OpRole::kRPC)) {
    int op_dev_id = CreateRPCOp(result, node);
    PADDLE_ENFORCE(op_dev_id != -1,
                   "Can not schedule the RPC operator to the right place.");
    if (node->Op()->Type() == "recv") {
      auto recv_vars_attr =
          boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
              OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE(recv_vars_attr.size() == 2UL);  // [parameter, gradient]
      if (recv_vars_attr[0].find(".block") == std::string::npos) {
        bcast_var_name_set_[op_dev_id].emplace(recv_vars_attr[0]);
      }
    }
    insert_op = true;
    need_broadcast_var_ = true;
  } else if (OpHaveRole(*node, OpRole::kDist)) {
    int op_dev_id = CreateDistTrainOp(result, node);
    if (node->Op()->Type() == "concat") {
810 811
      // the input(block of parameter) of concat is on different device,
      // the output(parameter) will on one device.
812 813 814 815 816 817 818
      auto origin_param_name = node->Op()->OutputArgumentNames()[0];
      bcast_var_name_set_[op_dev_id].emplace(origin_param_name);
    }
    insert_op = true;
  } else {
    int op_dev_id = GetOpDeviceID(node);
    if (op_dev_id != -1) {  // This op only runs on one specific device.
819
      // optimize op will be processed here.
820 821 822 823 824 825 826 827
      CreateComputationalOp(result, node, op_dev_id);
      for (ir::Node *n : node->outputs) {
        sharded_var_device_.emplace(n->Name(), op_dev_id);
      }
      insert_op = true;
    }
  }
  return insert_op;
W
Wu Yi 已提交
828 829 830
}

void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
X
clean1  
Xin Pan 已提交
831
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
832 833 834 835 836 837
  for (ir::Node *input : node->inputs) {
    VarHandle *var = nullptr;
    for (int place_offset = 0; place_offset < num_places; ++place_offset) {
      auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
      auto &var_holder = var_holders[input->Name()];
      if (!var_holder.empty()) {
X
clean1  
Xin Pan 已提交
838
        var = *var_holder.rbegin();
W
Wu Yi 已提交
839 840 841
        op_handle->AddInput(var);
      }
    }
Y
Yancey1989 已提交
842 843 844
  }
}

845
// Create RPC related op handles that connects its in ops and out ops.
846
int DistSSAGraphBuilder::CreateRPCOp(ir::Graph *result, ir::Node *node) const {
Y
Yancey1989 已提交
847
  int op_dev_id = -1;
848
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
849
    // TODO(paddle-dev): getting the first var is not safe.
850
    op_dev_id = GetVarDeviceID(node->inputs[0]->Name());
X
Xin Pan 已提交
851 852
    PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
                   "This hack no longer holds, please fix.");
Y
Yancey1989 已提交
853 854 855
    // the variable name which contains .block means it was splited by
    // split_byref op
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
856
        node->inputs[0]->Name().find(".block") == std::string::npos) {
857 858
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
859
        input_var_names.push_back(n->Name());
860
      }
W
Wu Yi 已提交
861 862 863 864
      auto send_param_grad = boost::get<std::vector<std::string>>(
          node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
      op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
M
minqiyang 已提交
865 866
      VLOG(10) << "send grad " << input_var_names[0] << " origin "
               << send_param_grad[1] << " place: " << op_dev_id;
867
      for (auto &varname : input_var_names) {
868
        sharded_var_device_.emplace(varname, op_dev_id);
Y
Yancey1989 已提交
869
      }
870
      sharded_var_device_.emplace(send_param_grad[1], op_dev_id);
Y
Yancey1989 已提交
871
    }
872 873 874
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
875
      output_var_names.push_back(n->Name());
876
    }
W
Wu Yi 已提交
877 878
    auto recv_param_grad = boost::get<std::vector<std::string>>(
        node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
Q
Qiao Longfei 已提交
879
    if (recv_param_grad.size() == 2U) {
880
      op_dev_id = GetVarDeviceID(recv_param_grad[1]);
M
minqiyang 已提交
881 882 883
      VLOG(10) << "recv param " << recv_param_grad[0]
               << " get grad place: " << recv_param_grad[1]
               << " place: " << op_dev_id;
W
Wu Yi 已提交
884 885 886
    } else {
      op_dev_id = GetAppropriateDeviceID(output_var_names);
    }
887
    for (auto &varname : output_var_names) {
888
      sharded_var_device_.emplace(varname, op_dev_id);
Y
Yancey1989 已提交
889 890
    }
  } else {
W
Wu Yi 已提交
891
    // send_barrier, fetch_barrier will run on place 0;
Y
Yancey1989 已提交
892 893 894 895
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
896
                 node->Op()->Type());
W
Wu Yi 已提交
897 898 899 900 901 902 903 904 905 906 907

  // Create fetch_barrier op handle to enable output on all devices.
  // **NOTE** fetch_barrier should output variables list same as recv op does.
  if (node->Op()->Type() == "fetch_barrier") {
    result->Get<GraphOps>(kGraphOps).emplace_back(new FetchBarrierOpHandle(
        result->CreateOpNode(node->Op()), local_scopes_, places_));
  } else {
    result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
        result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
        node->Op()->Type(), places_[op_dev_id]));
  }
Y
fix pe  
Yancey1989 已提交
908

W
Wu Yi 已提交
909 910
  if (node->Op()->Type() == "send") {
    CreateOpHandleIOs(result, node, op_dev_id);
Y
Yancey1989 已提交
911
  } else {
W
Wu Yi 已提交
912 913 914
    // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
    // all places
    auto p = places_[op_dev_id];
X
clean1  
Xin Pan 已提交
915
    auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
916 917
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
Y
Yancey1989 已提交
918

W
Wu Yi 已提交
919 920 921 922
    SetOpInputsAllPlaces(result, node, places_.size());
    for (ir::Node *output : node->outputs) {
      int outvar_dev_id = op_dev_id;
      if (node->Op()->Type() == "fetch_barrier") {
923
        outvar_dev_id = GetVarDeviceID(output->Name());
Q
Qiao Longfei 已提交
924
        PADDLE_ENFORCE_NE(outvar_dev_id, -1, "output name %s", output->Name());
W
Wu Yi 已提交
925 926 927 928 929 930 931 932 933 934 935 936
      }
      p = places_[outvar_dev_id];
      ir::Node *new_node = nullptr;
      if (output->Var()) {
        new_node = result->CreateVarNode(output->Var());
      } else {
        new_node =
            result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
      }
      CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
    }
  }
Y
Yancey1989 已提交
937
  return op_dev_id;
Y
Yu Yang 已提交
938 939
}

940 941 942 943 944 945 946
int DistSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
                                           ir::Node *node) const {
  int op_dev_id = -1;
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
    input_var_names.push_back(input->Name());
C
chengduo 已提交
947
  }
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
  for (ir::Node *output : node->outputs) {
    output_var_names.push_back(output->Name());
  }

  if (node->Op()->Type() == "split_byref" ||
      node->Op()->Type() == "split_selected_rows" ||
      node->Op()->Type() == "split_ids") {
    // TODO(paddle-dev): getting the first var is not safe.
    op_dev_id = GetVarDeviceID(input_var_names[0]);
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
        sharded_var_device_.emplace(varname, op_dev_id);
      }
    }
    for (auto &varname : output_var_names) {
      sharded_var_device_.emplace(varname, op_dev_id);
    }
  } else if (node->Op()->Type() == "concat") {
    op_dev_id = GetVarDeviceID(input_var_names[0]);
    for (auto &varname : output_var_names) {
      sharded_var_device_.emplace(varname, op_dev_id);
    }
  } else {
    LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
    PADDLE_THROW(
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());

  CreateComputationalOp(result, node, op_dev_id);
  return op_dev_id;
C
chengduo 已提交
984 985
}

G
gongweibao 已提交
986 987 988
#if defined(PADDLE_WITH_DGC)
bool AllReduceSSAGraphBuilder::IsEncoded(const std::string &p_name) const {
  auto u_name = p_name + g_dgc_u;
989 990 991 992 993 994 995 996
  auto it = all_vars_.find(u_name);
  if (it == all_vars_.end()) {
    VLOG(10) << "can't find u_name, so it's not encoded:" << u_name;
    return false;
  }

  return true;
}
G
gongweibao 已提交
997 998 999 1000 1001
#else
bool AllReduceSSAGraphBuilder::IsEncoded(const std::string &p_name) const {
  return false;
}
#endif
1002

1003 1004 1005
void DistSSAGraphBuilder::InsertCollectiveOp(ir::Graph *result,
                                             const std::string &p_name,
                                             const std::string &g_name) const {
1006
  // collective gradient to each device
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
  size_t cur_device_id = 0;
  switch (strategy_.reduce_) {
    case BuildStrategy::ReduceStrategy::kReduce:
      cur_device_id = GetAppropriateDeviceID({g_name});
      CreateReduceOp(result, g_name, cur_device_id);
      sharded_var_device_.emplace(g_name, cur_device_id);
      break;
    case BuildStrategy::ReduceStrategy::kAllReduce:
      if (IsSparseGradient(g_name)) {
        CreateReduceOp(result, g_name, 0);
        CreateBroadcastOp(result, g_name, 0);
      } else {
G
gongweibao 已提交
1019
        CreateAllReduceOp(result, g_name);
1020 1021 1022 1023 1024 1025 1026 1027 1028
      }
      break;
    default:
      LOG(FATAL) << "Unknown reduce strategy.";
      break;
  }
}

void DistSSAGraphBuilder::InsertPostprocessOps(ir::Graph *result) const {
1029 1030
  // broad cast received parameters when training in parameter server mode.
  if (need_broadcast_var_) {
Q
Qiao Longfei 已提交
1031 1032 1033 1034 1035 1036 1037 1038
    // There are 4 conditions:
    // 1. GPU && Reduce: Reduce gradient then broadcast gradient to other GPUS.
    // Need to broadcast received parameters to other GPU.
    // 2. GPU && AllReduce: AllReduce all graident to each GPU. Need to
    // broadcast received parameters to other GPU.
    // 3. CPU && AllReduce: AllReduce all gradient to each thread. Need to
    // broadcast received parameters to other scope.
    // 4. CPU && Reduce: because all parameters share the same memory, did not
Q
Qiao Longfei 已提交
1039
    // broadcast received parameters.
1040
    if (!UseGPU() &&
Q
Qiao Longfei 已提交
1041
        strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
1042 1043
      return;
    }
1044
    if (strategy_.fuse_broadcast_ops_) {
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
      CreateFusedBroadcastOp(result, bcast_var_name_set_);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set_.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set_[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(result, bcast_name, dev_id);
        }
      }
    }
  }
}

std::unordered_set<std::string> &MultiDevSSAGraphBuilder() {
  static std::unordered_set<std::string> regs;
  return regs;
Y
Yu Yang 已提交
1060
}
1061 1062 1063 1064 1065 1066

static int MultiDevSSAGraphBuilderRegister(const std::string &builder_mode) {
  MultiDevSSAGraphBuilder().insert(builder_mode);
  return 0;
}

Y
Yu Yang 已提交
1067 1068 1069
}  // namespace details
}  // namespace framework
}  // namespace paddle
X
Xin Pan 已提交
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
#define REGISTER_MULTI_DEVICES_PASS(pass_name, pass_class)                     \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                              \
      _reg_ssa_graph_builder_##pass_name,                                      \
      "REGISTER_MULTI_DEVICES_PASS must be called in global namespace.");      \
  int _reg_ssa_graph_builder_entry_##pass_name =                               \
      paddle::framework::details::MultiDevSSAGraphBuilderRegister(#pass_name); \
  REGISTER_PASS(pass_name, pass_class)                                         \
      .RequirePassAttr(paddle::framework::details::kLossVarName)               \
      .RequirePassAttr(paddle::framework::details::kPlaces)                    \
      .RequirePassAttr(paddle::framework::details::kLocalScopes)               \
      .RequirePassAttr(paddle::framework::details::kStrategy)                  \
      .RequirePassAttr(paddle::framework::details::kNRanks)

REGISTER_MULTI_DEVICES_PASS(reduce_mode_multi_devices_pass,
                            paddle::framework::details::ReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(
C
chengduo 已提交
1087
    all_reduce_mode_multi_devices_pass,
1088 1089 1090
    paddle::framework::details::AllReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(dist_multi_devices_pass,
                            paddle::framework::details::DistSSAGraphBuilder);
Q
can run  
Qiao Longfei 已提交
1091 1092
REGISTER_MULTI_DEVICES_PASS(async_multi_devices_pass,
                            paddle::framework::details::AsyncSSAGraphBuilder);