distribution.py 27.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define the distribution functions 
# __all__ = ['Categorical',
#            'MultivariateNormalDiag',
#            'Normal',
#            'sampling_id',
#            'Uniform']
21 22 23 24 25 26 27

from __future__ import print_function

from .fluid.layers import control_flow
from .fluid.layers import tensor
from .fluid.layers import ops
from .fluid.layers import nn
28
from .fluid import core
29 30 31 32 33 34 35 36
from .fluid.framework import in_dygraph_mode
from .tensor.math import elementwise_mul, elementwise_div, elementwise_add, elementwise_sub
import math
import numpy as np
import warnings

from .fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype

P
pangyoki 已提交
37
__all__ = ['Distribution', 'Uniform', 'Normal', 'Categorical']
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90


class Distribution(object):
    """
    The abstract base class for probability distributions. Functions are 
    implemented in specific distributions.
    """

    def __init__(self):
        super(Distribution, self).__init__()

    def sample(self):
        """Sampling from the distribution."""
        raise NotImplementedError

    def entropy(self):
        """The entropy of the distribution."""
        raise NotImplementedError

    def kl_divergence(self, other):
        """The KL-divergence between self distributions and other."""
        raise NotImplementedError

    def log_prob(self, value):
        """Log probability density/mass function."""
        raise NotImplementedError

    def probs(self, value):
        """Probability density/mass function."""
        raise NotImplementedError

    def _validate_args(self, *args):
        """
        Argument validation for distribution args
        Args:
            value (float, list, numpy.ndarray, Tensor)
        Raises
            ValueError: if one argument is Tensor, all arguments should be Tensor
        """
        is_variable = False
        is_number = False
        for arg in args:
            if isinstance(arg, tensor.Variable):
                is_variable = True
            else:
                is_number = True

        if is_variable and is_number:
            raise ValueError(
                'if one argument is Tensor, all arguments should be Tensor')

        return is_variable

91
    def _to_tensor(self, *args):
92 93 94 95 96 97 98 99 100 101 102 103 104 105
        """
        Argument convert args to Tensor

        Args:
            value (float, list, numpy.ndarray, Tensor)
        Returns:
            Tensor of args.
        """
        numpy_args = []
        variable_args = []
        tmp = 0.

        for arg in args:
            if isinstance(arg, float):
106 107 108 109 110 111
                arg = [arg]
            if not isinstance(arg, (list, np.ndarray, tensor.Variable)):
                raise TypeError(
                    "Type of input args must be float, list, numpy.ndarray or Tensor, but received type {}".
                    format(type(arg)))

112 113
            arg_np = np.array(arg)
            arg_dtype = arg_np.dtype
114 115 116 117 118 119 120
            if str(arg_dtype) != 'float32':
                if str(arg_dtype) != 'float64':
                    # "assign" op doesn't support float64. if dtype is float64, float32 variable will be generated
                    #  and converted to float64 later using "cast".
                    warnings.warn(
                        "data type of argument only support float32 and float64, your argument will be convert to float32."
                    )
121
                arg_np = arg_np.astype('float32')
122
            # tmp is used to support broadcast, it summarizes shapes of all the args and get the mixed shape.
123 124 125 126 127 128 129 130 131 132 133 134
            tmp = tmp + arg_np
            numpy_args.append(arg_np)

        dtype = tmp.dtype
        for arg in numpy_args:
            arg_broadcasted, _ = np.broadcast_arrays(arg, tmp)
            arg_variable = tensor.create_tensor(dtype=dtype)
            tensor.assign(arg_broadcasted, arg_variable)
            variable_args.append(arg_variable)

        return tuple(variable_args)

135 136 137 138 139 140
    def _check_values_dtype_in_probs(self, param, value):
        """
        Log_prob and probs methods have input ``value``, if value's dtype is different from param,
        convert value's dtype to be consistent with param's dtype.

        Args:
141
            param (Tensor): low and high in Uniform class, loc and scale in Normal class.
142 143 144 145 146 147 148 149 150 151 152 153 154
            value (Tensor): The input tensor.

        Returns:
            value (Tensor): Change value's dtype if value's dtype is different from param.
        """
        if in_dygraph_mode():
            if value.dtype != param.dtype and convert_dtype(
                    value.dtype) in ['float32', 'float64']:
                warnings.warn(
                    "dtype of input 'value' needs to be the same as parameters of distribution class. dtype of 'value' will be converted."
                )
                return core.ops.cast(value, 'in_dtype', value.dtype,
                                     'out_dtype', param.dtype)
155
            return value
156 157 158 159 160 161 162 163 164 165

        check_variable_and_dtype(value, 'value', ['float32', 'float64'],
                                 'log_prob')
        if value.dtype != param.dtype:
            warnings.warn(
                "dtype of input 'value' needs to be the same as parameters of distribution class. dtype of 'value' will be converted."
            )
            return tensor.cast(value, dtype=param.dtype)
        return value

166 167 168 169 170 171

class Uniform(Distribution):
    """Uniform distribution with `low` and `high` parameters.

    Mathematical Details

172
    The probability density function (pdf) is
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

    .. math::

        pdf(x; a, b) = \\frac{1}{Z}, \ a <=x <b

    .. math::

        Z = b - a

    In the above equation:

    * :math:`low = a`,
    * :math:`high = b`,
    * :math:`Z`: is the normalizing constant.

    The parameters `low` and `high` must be shaped in a way that supports
    [broadcasting](https://www.paddlepaddle.org.cn/documentation/docs/en/develop/beginners_guide/basic_concept/broadcasting_en.html) (e.g., `high - low` is a valid operation).

    Args:
192 193
        low(int|float|list|numpy.ndarray|Tensor): The lower boundary of uniform distribution.The data type is int, float, list, numpy.ndarray or Tensor
        high(int|float|list|numpy.ndarray|Tensor): The higher boundary of uniform distribution.The data type is int, float, list, numpy.ndarray or Tensor
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python

          import numpy as np
          import paddle
          from paddle.distribution import Uniform

          paddle.disable_static()
          # Without broadcasting, a single uniform distribution [3, 4]:
          u1 = Uniform(low=3.0, high=4.0)
          # 2 distributions [1, 3], [2, 4]
          u2 = Uniform(low=[1.0, 2.0], high=[3.0, 4.0])
          # 4 distributions
          u3 = Uniform(low=[[1.0, 2.0], [3.0, 4.0]],
                    high=[[1.5, 2.5], [3.5, 4.5]])

          # With broadcasting:
          u4 = Uniform(low=3.0, high=[5.0, 6.0, 7.0])

          # Complete example
          value_npdata = np.array([0.8], dtype="float32")
          value_tensor = paddle.to_tensor(value_npdata)

          uniform = Uniform([0.], [2.])

          sample = uniform.sample([2])
          # a random tensor created by uniform distribution with shape: [2, 1]
          entropy = uniform.entropy()
          # [0.6931472] with shape: [1]
          lp = uniform.log_prob(value_tensor)
          # [-0.6931472] with shape: [1]
          p = uniform.probs(value_tensor)
          # [0.5] with shape: [1]
    """

    def __init__(self, low, high, name=None):
        if not in_dygraph_mode():
            check_type(low, 'low',
                       (int, float, np.ndarray, tensor.Variable, list),
                       'Uniform')
            check_type(high, 'high',
                       (int, float, np.ndarray, tensor.Variable, list),
                       'Uniform')

        self.all_arg_is_float = False
        self.batch_size_unknown = False
        self.name = name if name is not None else 'Uniform'
243
        self.dtype = 'float32'
244 245 246 247 248 249 250 251 252 253

        if isinstance(low, int):
            low = float(low)
        if isinstance(high, int):
            high = float(high)

        if self._validate_args(low, high):
            self.batch_size_unknown = True
            self.low = low
            self.high = high
254
            self.dtype = convert_dtype(low.dtype)
255 256 257
        else:
            if isinstance(low, float) and isinstance(high, float):
                self.all_arg_is_float = True
258 259 260 261 262 263 264 265
            if isinstance(
                    low,
                    np.ndarray) and str(low.dtype) in ['float32', 'float64']:
                self.dtype = low.dtype
            elif isinstance(
                    high,
                    np.ndarray) and str(high.dtype) in ['float32', 'float64']:
                self.dtype = high.dtype
266
            self.low, self.high = self._to_tensor(low, high)
267 268 269
            if self.dtype != convert_dtype(self.low.dtype):
                self.low = tensor.cast(self.low, dtype=self.dtype)
                self.high = tensor.cast(self.high, dtype=self.dtype)
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

    def sample(self, shape, seed=0):
        """Generate samples of the specified shape.

        Args:
          shape (list): 1D `int32`. Shape of the generated samples.
          seed (int): Python integer number.

        Returns:
          Tensor: A tensor with prepended dimensions shape.The data type is float32.

        """
        if not in_dygraph_mode():
            check_type(shape, 'shape', (list), 'sample')
            check_type(seed, 'seed', (int), 'sample')

        name = self.name + '_sample'
        batch_shape = list((self.low + self.high).shape)
        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
291
                self.low + self.high, batch_shape + shape, self.dtype, 0.)
292
            uniform_random_tmp = nn.uniform_random_batch_size_like(
293 294
                zero_tmp,
                zero_tmp.shape,
295
                dtype=self.dtype,
296 297 298 299 300 301 302 303 304 305
                min=0.,
                max=1.,
                seed=seed)
            zero_tmp_reshape = nn.reshape(zero_tmp, output_shape)
            uniform_random_tmp_reshape = nn.reshape(uniform_random_tmp,
                                                    output_shape)
            output = uniform_random_tmp_reshape * (
                zero_tmp_reshape + self.high - self.low)
            output = elementwise_add(output, self.low, name=name)
            return output
306 307 308
        else:
            output_shape = shape + batch_shape
            output = nn.uniform_random(
309 310
                output_shape, seed=seed, dtype=self.dtype) * (tensor.zeros(
                    output_shape, dtype=self.dtype) + (self.high - self.low))
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
            output = elementwise_add(output, self.low, name=name)
            if self.all_arg_is_float:
                return nn.reshape(output, shape, name=name)
            else:
                return output

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
          Tensor: log probability.The data type is same with value.

        """
        name = self.name + '_log_prob'
328
        value = self._check_values_dtype_in_probs(self.low, value)
329
        if in_dygraph_mode():
330
            # ensure value in [low, high]
331 332
            lb_bool = self.low < value
            ub_bool = value < self.high
333 334

            lb = core.ops.cast(lb_bool, 'in_dtype', lb_bool.dtype, 'out_dtype',
335
                               value.dtype)
336
            ub = core.ops.cast(ub_bool, 'in_dtype', ub_bool.dtype, 'out_dtype',
337
                               value.dtype)
338
            return nn.log(lb * ub) - nn.log(self.high - self.low)
339

340 341
        lb_bool = self.low < value
        ub_bool = value < self.high
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
        lb = tensor.cast(lb_bool, dtype=value.dtype)
        ub = tensor.cast(ub_bool, dtype=value.dtype)
        return elementwise_sub(
            nn.log(lb * ub), nn.log(self.high - self.low), name=name)

    def probs(self, value):
        """Probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
          Tensor: probability.The data type is same with value.

        """
        name = self.name + '_probs'
358
        value = self._check_values_dtype_in_probs(self.low, value)
359 360 361
        if in_dygraph_mode():
            lb_bool = self.low < value
            ub_bool = value < self.high
362 363

            lb = core.ops.cast(lb_bool, 'in_dtype', lb_bool.dtype, 'out_dtype',
364
                               value.dtype)
365
            ub = core.ops.cast(ub_bool, 'in_dtype', ub_bool.dtype, 'out_dtype',
366
                               value.dtype)
367
            return (lb * ub) / (self.high - self.low)
368

369 370
        lb_bool = self.low < value
        ub_bool = value < self.high
371 372 373 374 375 376 377
        lb = tensor.cast(lb_bool, dtype=value.dtype)
        ub = tensor.cast(ub_bool, dtype=value.dtype)
        return elementwise_div((lb * ub), (self.high - self.low), name=name)

    def entropy(self):
        """Shannon entropy in nats.

378 379 380 381 382 383
        The entropy is

        .. math::

            entropy(low, high) = \\log (high - low)

384 385 386 387 388 389 390 391 392 393 394 395 396
        Returns:
          Tensor: Shannon entropy of uniform distribution.The data type is float32.

        """
        name = self.name + '_entropy'
        return nn.log(self.high - self.low, name=name)


class Normal(Distribution):
    """The Normal distribution with location `loc` and `scale` parameters.

    Mathematical details

397
    The probability density function (pdf) is
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

    .. math::

        pdf(x; \mu, \sigma) = \\frac{1}{Z}e^{\\frac {-0.5 (x - \mu)^2}  {\sigma^2} }

    .. math::

        Z = (2 \pi \sigma^2)^{0.5}

    In the above equation:

    * :math:`loc = \mu`: is the mean.
    * :math:`scale = \sigma`: is the std.
    * :math:`Z`: is the normalization constant.

    Args:
414 415
        loc(int|float|list|numpy.ndarray|Tensor): The mean of normal distribution.The data type is int, float, list, numpy.ndarray or Tensor.
        scale(int|float|list|numpy.ndarray|Tensor): The std of normal distribution.The data type is int, float, list, numpy.ndarray or Tensor.
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
        name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python
          
          import numpy as np
          import paddle
          from paddle.distribution import Normal

          paddle.disable_static()
          # Define a single scalar Normal distribution.
          dist = Normal(loc=0., scale=3.)
          # Define a batch of two scalar valued Normals.
          # The first has mean 1 and standard deviation 11, the second 2 and 22.
          dist = Normal(loc=[1., 2.], scale=[11., 22.])
          # Get 3 samples, returning a 3 x 2 tensor.
          dist.sample([3])

          # Define a batch of two scalar valued Normals.
          # Both have mean 1, but different standard deviations.
          dist = Normal(loc=1., scale=[11., 22.])

          # Complete example
          value_npdata = np.array([0.8], dtype="float32")
          value_tensor = paddle.to_tensor(value_npdata)

          normal_a = Normal([0.], [1.])
          normal_b = Normal([0.5], [2.])
          sample = normal_a.sample([2])
          # a random tensor created by normal distribution with shape: [2, 1]
          entropy = normal_a.entropy()
          # [1.4189385] with shape: [1]
          lp = normal_a.log_prob(value_tensor)
          # [-1.2389386] with shape: [1]
          p = normal_a.probs(value_tensor)
          # [0.28969154] with shape: [1]
          kl = normal_a.kl_divergence(normal_b)
          # [0.34939718] with shape: [1]
    """

    def __init__(self, loc, scale, name=None):
        if not in_dygraph_mode():
            check_type(loc, 'loc',
                       (int, float, np.ndarray, tensor.Variable, list),
                       'Normal')
            check_type(scale, 'scale',
                       (int, float, np.ndarray, tensor.Variable, list),
                       'Normal')

        self.batch_size_unknown = False
        self.all_arg_is_float = False
        self.name = name if name is not None else 'Normal'
468
        self.dtype = 'float32'
469 470 471 472 473 474 475 476 477 478

        if isinstance(loc, int):
            loc = float(loc)
        if isinstance(scale, int):
            scale = float(scale)

        if self._validate_args(loc, scale):
            self.batch_size_unknown = True
            self.loc = loc
            self.scale = scale
479
            self.dtype = convert_dtype(loc.dtype)
480 481 482
        else:
            if isinstance(loc, float) and isinstance(scale, float):
                self.all_arg_is_float = True
483 484 485 486 487 488 489 490
            if isinstance(
                    loc,
                    np.ndarray) and str(loc.dtype) in ['float32', 'float64']:
                self.dtype = loc.dtype
            elif isinstance(
                    scale,
                    np.ndarray) and str(scale.dtype) in ['float32', 'float64']:
                self.dtype = scale.dtype
491
            self.loc, self.scale = self._to_tensor(loc, scale)
492 493 494
            if self.dtype != convert_dtype(self.loc.dtype):
                self.loc = tensor.cast(self.loc, dtype=self.dtype)
                self.scale = tensor.cast(self.scale, dtype=self.dtype)
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

    def sample(self, shape, seed=0):
        """Generate samples of the specified shape.

        Args:
          shape (list): 1D `int32`. Shape of the generated samples.
          seed (int): Python integer number.

        Returns:
          Tensor: A tensor with prepended dimensions shape.The data type is float32.

        """
        if not in_dygraph_mode():
            check_type(shape, 'shape', (list), 'sample')
            check_type(seed, 'seed', (int), 'sample')

        batch_shape = list((self.loc + self.scale).shape)
        name = self.name + '_sample'

        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
517
                self.loc + self.scale, batch_shape + shape, self.dtype, 0.)
518 519
            zero_tmp_reshape = nn.reshape(zero_tmp, output_shape)
            zero_tmp_shape = nn.shape(zero_tmp_reshape)
520
            normal_random_tmp = nn.gaussian_random(
521
                zero_tmp_shape, mean=0., std=1., seed=seed, dtype=self.dtype)
522 523 524
            output = normal_random_tmp * (zero_tmp_reshape + self.scale)
            output = elementwise_add(output, self.loc, name=name)
            return output
525 526
        else:
            output_shape = shape + batch_shape
527 528
            output = nn.gaussian_random(output_shape, mean=0., std=1., seed=seed, dtype=self.dtype) * \
                     (tensor.zeros(output_shape, dtype=self.dtype) + self.scale)
529 530 531 532 533 534 535 536 537
            output = elementwise_add(output, self.loc, name=name)
            if self.all_arg_is_float:
                return nn.reshape(output, shape, name=name)
            else:
                return output

    def entropy(self):
        """Shannon entropy in nats.

538 539 540 541 542 543 544 545 546 547
        The entropy is

        .. math::

            entropy(\sigma) = 0.5 \\log (2 \pi e \sigma^2)

        In the above equation:

        * :math:`scale = \sigma`: is the std.

548 549 550 551 552 553 554
        Returns:
          Tensor: Shannon entropy of normal distribution.The data type is float32.

        """
        name = self.name + '_entropy'
        batch_shape = list((self.loc + self.scale).shape)
        zero_tmp = tensor.fill_constant_batch_size_like(
555
            self.loc + self.scale, batch_shape, self.dtype, 0.)
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
        return elementwise_add(
            0.5 + zero_tmp,
            0.5 * math.log(2 * math.pi) + nn.log((self.scale + zero_tmp)),
            name=name)

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
          Tensor: log probability.The data type is same with value.

        """
        name = self.name + '_log_prob'
572 573
        value = self._check_values_dtype_in_probs(self.loc, value)

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
        var = self.scale * self.scale
        log_scale = nn.log(self.scale)
        return elementwise_sub(
            -1. * ((value - self.loc) * (value - self.loc)) / (2. * var),
            log_scale + math.log(math.sqrt(2. * math.pi)),
            name=name)

    def probs(self, value):
        """Probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
          Tensor: probability.The data type is same with value.

        """
        name = self.name + '_probs'
592 593
        value = self._check_values_dtype_in_probs(self.loc, value)

594 595 596 597 598 599 600 601 602
        var = self.scale * self.scale
        return elementwise_div(
            ops.exp(-1. * ((value - self.loc) * (value - self.loc)) /
                    (2. * var)), (math.sqrt(2 * math.pi) * self.scale),
            name=name)

    def kl_divergence(self, other):
        """The KL-divergence between two normal distributions.

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
        The probability density function (pdf) is

        .. math::

            KL\_divergence(\mu_0, \sigma_0; \mu_1, \sigma_1) = 0.5 (ratio^2 + (\\frac{diff}{\sigma_1})^2 - 1 - 2 \\ln {ratio})

        .. math::

            ratio = \\frac{\sigma_0}{\sigma_1}
        
        .. math::

            diff = \mu_1 - \mu_0

        In the above equation:

        * :math:`loc = \mu_0`: is the mean of current Normal distribution.
        * :math:`scale = \sigma_0`: is the std of current Normal distribution.
        * :math:`loc = \mu_1`: is the mean of other Normal distribution.
        * :math:`scale = \sigma_1`: is the std of other Normal distribution.
        * :math:`ratio`: is the ratio of scales.
        * :math:`diff`: is the difference between means.

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
        Args:
            other (Normal): instance of Normal.

        Returns:
            Tensor: kl-divergence between two normal distributions.The data type is float32.

        """
        if not in_dygraph_mode():
            check_type(other, 'other', Normal, 'kl_divergence')

        name = self.name + '_kl_divergence'
        var_ratio = self.scale / other.scale
        var_ratio = (var_ratio * var_ratio)
        t1 = (self.loc - other.loc) / other.scale
        t1 = (t1 * t1)
        return elementwise_add(
            0.5 * var_ratio, 0.5 * (t1 - 1. - nn.log(var_ratio)), name=name)
P
pangyoki 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793


class Categorical(Distribution):
    """
    Categorical distribution is a discrete probability distribution that 
    describes the possible results of a random variable that can take on 
    one of K possible categories, with the probability of each category 
    separately specified.

    The probability mass function (pmf) is:

    .. math::

        pmf(k; p_i) = \prod_{i=1}^{k} p_i^{[x=i]}

    In the above equation:

    * :math:`[x=i]` : it evaluates to 1 if :math:`x==i` , 0 otherwise.

    Args:
        logits(list|numpy.ndarray|Variable): The logits input of categorical distribution. The data type is float32.

    Examples:
        .. code-block:: python

          import numpy as np
          from paddle.fluid import layers
          from paddle.fluid.layers import Categorical

          a_logits_npdata = np.array([-0.602,-0.602], dtype="float32")
          a_logits_tensor = layers.create_tensor(dtype="float32")
          layers.assign(a_logits_npdata, a_logits_tensor)

          b_logits_npdata = np.array([-0.102,-0.112], dtype="float32")
          b_logits_tensor = layers.create_tensor(dtype="float32")
          layers.assign(b_logits_npdata, b_logits_tensor)
          
          a = Categorical(a_logits_tensor)
          b = Categorical(b_logits_tensor)

          a.entropy()
          # [0.6931472] with shape: [1]

          b.entropy()
          # [0.6931347] with shape: [1]

          a.kl_divergence(b)
          # [1.2516975e-05] with shape: [1]

    """

    def __init__(self, logits, name=None):
        """
        Args:
            logits(list|numpy.ndarray|Variable): The logits input of categorical distribution. The data type is float32.
        """
        if not in_dygraph_mode():
            check_type(logits, 'logits', (np.ndarray, tensor.Variable, list),
                       'Categorical')

        self.name = name if name is not None else 'Categorical'
        self.dtype = 'float32'

        if self._validate_args(logits):
            self.logits = logits
            self.dtype = convert_dtype(logits.dtype)
        else:
            if isinstance(logits, np.ndarray) and str(
                    logits.dtype) in ['float32', 'float64']:
                self.dtype = logits.dtype
            self.logits = self._to_tensor(logits)[0]
            if self.dtype != convert_dtype(self.logits.dtype):
                self.logits = tensor.cast(self.logits, dtype=self.dtype)

    def sample(self, shape):
        """Generate samples of the specified shape.

        Args:
          shape (list): 1D `int32`. Shape of the generated samples.

        Returns:
          Tensor: A tensor with prepended dimensions shape.The data type is float32.

        """
        name = self.name + '_sample'
        num_samples = np.prod(np.array(shape))

        if in_dygraph_mode():
            sample_index = core.ops.multinomial(
                self.logits, 'num_samples', num_samples, 'replacement', True)
            return nn.reshape(sample_index, shape + [-1])

        check_type(shape, 'shape', (list), 'sample')

        helper = LayerHelper("multinomial", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_('int64'))
        helper.append_op(
            type='multinomial',
            inputs={"X": self.logits},
            outputs={'Out': out},
            attrs={'num_samples': num_samples,
                   'replacement': True})
        return nn.reshape(out, shape + [-1], name=name)

    def kl_divergence(self, other):
        """The KL-divergence between two Categorical distributions.

        Args:
            other (Categorical): instance of Categorical. The data type is float32.

        Returns:
            Variable: kl-divergence between two Categorical distributions.

        """
        name = self.name + '_kl_divergence'
        if not in_dygraph_mode():
            check_type(other, 'other', Categorical, 'kl_divergence')

        logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
        other_logits = other.logits - nn.reduce_max(
            other.logits, dim=-1, keep_dim=True)
        e_logits = ops.exp(logits)
        other_e_logits = ops.exp(other_logits)
        z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
        other_z = nn.reduce_sum(other_e_logits, dim=-1, keep_dim=True)
        prob = e_logits / z
        kl = nn.reduce_sum(
            prob * (logits - nn.log(z) - other_logits + nn.log(other_z)),
            dim=-1,
            keep_dim=True,
            name=name)

        return kl

    def entropy(self):
        """Shannon entropy in nats.

        Returns:
          Variable: Shannon entropy of Categorical distribution. The data type is float32.

        """
        name = self.name + '_entropy'
        logits = self.logits - nn.reduce_max(self.logits, dim=-1, keep_dim=True)
        e_logits = ops.exp(logits)
        z = nn.reduce_sum(e_logits, dim=-1, keep_dim=True)
        prob = e_logits / z
        entropy = -1.0 * nn.reduce_sum(
            prob * (logits - nn.log(z)), dim=-1, keep_dim=True, name=name)

        return entropy