concat_mkldnn_op.cc 8.0 KB
Newer Older
M
Michal Gallus 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
Michal Gallus 已提交
15
#include <memory>
M
Michal Gallus 已提交
16 17
#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
Michal Gallus 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::concat;
using mkldnn::stream;
using platform::to_void_cast;

static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
  for (auto* input : inputs) {
33 34
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
A
Adam 已提交
35
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
36
                      "Wrong format set for Input tensor");
M
Michal Gallus 已提交
37 38 39
  }
}

A
Adam 已提交
40 41 42
static memory::desc CreateMemDesc(const Tensor& input,
                                  const memory::data_type& dt) {
  const auto dims = paddle::framework::vectorize<int64_t>(input.dims());
M
Michal Gallus 已提交
43
  const auto format = input.format();
A
Adam 已提交
44 45
  auto mem_desc = memory::desc(dims, dt, format);
  return mem_desc;
M
Michal Gallus 已提交
46 47 48 49 50 51 52 53 54 55
}

static platform::CPUPlace GetCpuPlace(
    const paddle::framework::ExecutionContext& ctx) {
  auto place = ctx.GetPlace();
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(place),
                 "It must use CPUPlace.");
  return boost::get<platform::CPUPlace>(place);
}

M
Michal Gallus 已提交
56
static const mkldnn::engine& GetMKLDNNEngine(
57 58 59
    const paddle::framework::ExecutionContext& ctx) {
  auto& dev_ctx = ctx.template device_context<platform::MKLDNNDeviceContext>();
  return dev_ctx.GetEngine();
M
Michal Gallus 已提交
60
}
M
Michal Gallus 已提交
61

62 63 64 65 66 67 68 69 70 71
// From a multi-input, gather only nonempty inputs
static const std::vector<const Tensor*> ReduceMultiInput(
    const std::vector<const Tensor*>& inputs) {
  std::vector<const Tensor*> reduced(inputs.size());
  auto end_it = std::copy_if(inputs.begin(), inputs.end(), reduced.begin(),
                             [](const Tensor* t) { return t->numel() > 0; });
  reduced.resize(std::distance(reduced.begin(), end_it));
  return reduced;
}

M
Michal Gallus 已提交
72 73 74 75 76
template <typename T>
class ConcatPrimitiveFactory {
 public:
  concat::primitive_desc CreateConcatPrimDescriptor(
      const std::vector<const Tensor*> multi_input, Tensor* output,
77 78 79 80
      int concat_axis, const mkldnn::engine& mkldnn_engine,
      const memory::data_type& dt = memory::data_type::f32) {
    CreateSourcesDescriptors(multi_input, mkldnn_engine, dt);
    auto dst_desc = CreateDstMemDescriptor(output, dt);
A
Adam 已提交
81
    return concat::primitive_desc(dst_desc, concat_axis, srcs_d, mkldnn_engine);
M
Michal Gallus 已提交
82
  }
M
Michal Gallus 已提交
83

M
Michal Gallus 已提交
84
  concat CreateConcatPrimitive(const concat::primitive_desc& concat_pd,
A
Adam 已提交
85 86
                               Tensor* output, platform::CPUPlace place,
                               const mkldnn::engine& mkldnn_engine) {
87 88 89 90
    dst_mem = mkldnn::memory(
        concat_pd.dst_desc(), mkldnn_engine,
        output->mutable_data<T>(place, concat_pd.dst_desc().get_size()));

A
Adam 已提交
91
    return concat(concat_pd);
M
Michal Gallus 已提交
92 93
  }

94 95 96 97 98 99 100 101 102 103 104 105 106
  void SetSrcDataHandleByIndex(const std::vector<memory>& srcs, const size_t& i,
                               void* handler) {
    srcs[i].set_data_handle(handler);
  }

  void SetDstDataHandle(const memory& dst_mem, void* handler) {
    dst_mem.set_data_handle(handler);
  }

  std::vector<memory> GetSrcs() { return srcs; }

  memory GetDst() { return dst_mem.get(); }

M
Michal Gallus 已提交
107
 private:
108 109
  memory::desc CreateDstMemDescriptor(Tensor* output,
                                      const memory::data_type& dt) {
A
Adam 已提交
110
    auto dst_dims = paddle::framework::vectorize<int64_t>(output->dims());
111
    return memory::desc(dst_dims, dt, MKLDNNMemoryFormat::any);
M
Michal Gallus 已提交
112 113 114
  }

  void CreateSourcesDescriptors(const std::vector<const Tensor*> multi_input,
115 116
                                const mkldnn::engine& mkldnn_engine,
                                const memory::data_type& dt) {
M
Michal Gallus 已提交
117
    for (size_t i = 0; i < multi_input.size(); i++) {
A
Adam 已提交
118 119 120 121
      auto mem_desc = CreateMemDesc(*multi_input[i], dt);
      srcs_d.push_back(mem_desc);
      srcs.push_back(memory(mem_desc, mkldnn_engine,
                            to_void_cast(multi_input[i]->data<T>())));
M
Michal Gallus 已提交
122
    }
M
Michal Gallus 已提交
123 124 125
  }

 private:
A
Adam 已提交
126 127 128
  std::vector<memory::desc> srcs_d;
  std::vector<mkldnn::memory> srcs;
  boost::optional<mkldnn::memory> dst_mem;
129
};
M
Michal Gallus 已提交
130 131 132 133 134

template <typename T>
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
135
    auto multi_input = ReduceMultiInput(ctx.MultiInput<Tensor>("X"));
M
Michal Gallus 已提交
136 137
    EnforceLayouts(multi_input);
    Tensor* output = ctx.Output<Tensor>("Out");
A
Adam 已提交
138
    int concat_axis = ctx.Attr<int>("axis");
139 140 141 142 143 144
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    auto place = GetCpuPlace(ctx);

    memory::data_type dt =
        paddle::framework::ToMKLDNNDataType(multi_input[0]->type());
M
Michal Gallus 已提交
145 146

    ConcatPrimitiveFactory<T> prim_creator;
147 148
    // If one of the multiple inputs of concat has an input size of 0, the
    // actual size of the multi_input will change
149
    std::string key = platform::CreateKey(
150
        paddle::framework::vectorize<int>(multi_input[0]->dims()),
151 152
        multi_input.size(), ctx.OutputName("Out"), dt,
        platform::ThreadIDasStr());
A
Adam 已提交
153

154 155 156 157 158 159 160 161 162 163
    const std::string key_prim = key + "@concat_p";
    const std::string key_concat_pd = key + "@concat_pd";
    const std::string key_srcs = key + "@concat_srcs";
    const std::string key_dst = key + "@concat_dst";

    std::shared_ptr<concat::primitive_desc> concat_pd;
    std::shared_ptr<std::vector<memory>> srcs;
    std::shared_ptr<memory> dst_mem;
    auto concat_p = std::static_pointer_cast<concat>(dev_ctx.GetBlob(key_prim));

A
Adam 已提交
164
    const auto& mkldnn_engine = dev_ctx.GetEngine();
165 166
    if (concat_p == nullptr) {
      concat_pd = std::make_shared<concat::primitive_desc>(
A
Adam 已提交
167 168 169 170
          prim_creator.CreateConcatPrimDescriptor(
              multi_input, output, concat_axis, mkldnn_engine, dt));
      concat_p = std::make_shared<concat>(prim_creator.CreateConcatPrimitive(
          *concat_pd, output, place, mkldnn_engine));
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
      srcs = std::make_shared<std::vector<memory>>(prim_creator.GetSrcs());
      dst_mem = std::make_shared<memory>(prim_creator.GetDst());
      dev_ctx.SetBlob(key_prim, concat_p);
      dev_ctx.SetBlob(key_concat_pd, concat_pd);
      dev_ctx.SetBlob(key_srcs, srcs);
      dev_ctx.SetBlob(key_dst, dst_mem);
    } else {
      srcs = std::static_pointer_cast<std::vector<memory>>(
          dev_ctx.GetBlob(key_srcs));
      dst_mem = std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_dst));
      concat_pd = std::static_pointer_cast<concat::primitive_desc>(
          dev_ctx.GetBlob(key_concat_pd));
      for (size_t i = 0; i < multi_input.size(); i++) {
        prim_creator.SetSrcDataHandleByIndex(
            *srcs, i, to_void_cast<T>(multi_input[i]->data<T>()));
      }
187 188 189
      prim_creator.SetDstDataHandle(
          *dst_mem,
          output->mutable_data<T>(place, concat_pd->dst_desc().get_size()));
190 191
    }

A
Adam 已提交
192 193 194 195 196 197 198 199 200
    mkldnn::stream astream(mkldnn_engine);
    std::unordered_map<int, memory> args;
    for (size_t i = 0; i < multi_input.size(); ++i) {
      args.insert({MKLDNN_ARG_MULTIPLE_SRC + i, (*srcs).at(i)});
    }
    args.insert({MKLDNN_ARG_DST, *dst_mem});

    concat_p->execute(astream, args);
    astream.wait();
M
Michal Gallus 已提交
201

202
    output->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
203
    output->set_format(platform::GetMKLDNNFormat(*dst_mem));
M
Michal Gallus 已提交
204 205 206 207 208 209 210 211
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
212 213 214
                   ops::ConcatMKLDNNOpKernel<float>,
                   ops::ConcatMKLDNNOpKernel<int8_t>,
                   ops::ConcatMKLDNNOpKernel<uint8_t>);