nce_op.h 15.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15 16

#pragma once

W
wanghaoshuang 已提交
17
#include <math.h>
T
tangwei12 已提交
18
#include <iterator>
W
wanghaoshuang 已提交
19
#include <random>
20
#include <set>
T
tangwei12 已提交
21
#include <string>
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/selected_rows.h"
26
#include "paddle/fluid/operators/math/sampler.h"
W
wanghaoshuang 已提交
27
#include "unsupported/Eigen/CXX11/Tensor"
28

T
tangwei12 已提交
29 30 31 32
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#endif

W
wanghaoshuang 已提交
33 34 35
namespace paddle {
namespace operators {

36
using Tensor = framework::Tensor;
37 38
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
39
using Sampler = math::Sampler;
40
using DDim = framework::DDim;
W
wanghaoshuang 已提交
41 42 43 44 45

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
46
template <typename DeviceContext, typename T>
47 48
void PrepareSamples(const framework::ExecutionContext &context,
                    Sampler *sampler) {
W
wanghaoshuang 已提交
49
  auto label = context.Input<Tensor>("Label");
50
  const int64_t *label_data = label->data<int64_t>();
W
wanghaoshuang 已提交
51
  auto label_dims = label->dims();
52
  //  int num_total_classes = context.Attr<int>("num_total_classes");
W
wanghaoshuang 已提交
53
  // for unitest
W
wanghaoshuang 已提交
54 55
  std::vector<int> custom_neg_classes =
      context.Attr<std::vector<int>>("custom_neg_classes");
W
wanghaoshuang 已提交
56 57 58

  auto sample_labels = context.Output<Tensor>("SampleLabels");
  auto sample_labels_dims = sample_labels->dims();
59
  int64_t *sample_labels_data =
W
wanghaoshuang 已提交
60
      sample_labels->mutable_data<int64_t>(context.GetPlace());
W
wanghaoshuang 已提交
61 62

  int num_label = label_dims.size() == 2 ? label_dims[1] : 1;
W
wanghaoshuang 已提交
63
  int index = 0;
64
  for (int64_t i = 0; i < label_dims[0]; ++i) {
W
wanghaoshuang 已提交
65 66
    int j = 0;
    for (; j < num_label; ++j) {
W
wanghaoshuang 已提交
67
      sample_labels_data[index++] = label_data[i * num_label + j];
W
wanghaoshuang 已提交
68
    }
W
wanghaoshuang 已提交
69 70
    if (custom_neg_classes.size() > 0) {
      for (auto label : custom_neg_classes) {
W
wanghaoshuang 已提交
71 72 73 74
        sample_labels_data[index++] = label;
      }
    } else {
      for (; j < sample_labels_dims[1]; ++j) {
W
wanghaoshuang 已提交
75
        // TODO(wanghaoshuang): support more distribution sampling
76
        sample_labels_data[index++] = sampler->Sample();
W
wanghaoshuang 已提交
77
      }
W
wanghaoshuang 已提交
78 79 80 81
    }
  }
}

Q
QI JUN 已提交
82
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
83 84
class NCEKernel : public framework::OpKernel<T> {
 public:
85
  void Compute(const framework::ExecutionContext &context) const override {
86 87 88 89 90
    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
    int num_total_classes = context.Attr<int>("num_total_classes");
    int num_neg_samples = context.Attr<int>("num_neg_samples");

91
    Sampler *sampler;
92 93 94 95 96 97 98 99 100 101
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
102 103 104 105 106 107 108 109 110 111 112 113 114
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

        PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
115 116 117 118 119 120
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    PrepareSamples<DeviceContext, T>(context, sampler);
W
wanghaoshuang 已提交
121
    auto sample_labels = context.Output<Tensor>("SampleLabels");
122
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
W
wanghaoshuang 已提交
123
    auto sample_out = context.Output<Tensor>("SampleLogits");
124
    T *sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
125 126
    auto label = context.Input<Tensor>("Label");
    auto sample_weight = context.Input<Tensor>("SampleWeight");
127
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
128 129 130
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
131
    auto out = context.Output<Tensor>("Cost");
132
    T *out_data = out->mutable_data<T>(context.GetPlace());
133
    int64_t num_true_class = 1;
W
wanghaoshuang 已提交
134 135 136
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
137 138
    int64_t sampled_labels_num = sample_labels->dims()[1];
    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
139
    // forward bias
W
wanghaoshuang 已提交
140
    auto bias = context.Input<Tensor>("Bias");
W
wanghaoshuang 已提交
141
    if (bias != nullptr) {
142
      const T *bias_data = bias->data<T>();
143
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
144 145 146
        sample_out_data[i] = bias_data[sample_labels_data[i]];
      }
    } else {
147
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
148 149 150 151
        sample_out_data[i] = 0;
      }
    }
    // forward mul
W
wanghaoshuang 已提交
152
    auto input_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
T
tangwei12 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

    // for remote prefetch
    auto epmap = context.Attr<std::vector<std::string>>("epmap");

    if (!epmap.empty()) {
      // if epmap is not empty, then the parameter will be fetched from remote
      // parameter
      // server

      std::vector<int64_t> labels;
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        labels.push_back(sample_labels_data[i]);
      }
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

      auto &local_scope = context.scope().NewScope();
      auto height_sections = context.Attr<std::vector<int>>("height_sections");
      auto table_names = context.Attr<std::vector<std::string>>("table_names");

T
tangwei12 已提交
173 174
      local_scope.Var("Ids");
      local_scope.Var("Weight");
T
tangwei12 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

#ifdef PADDLE_WITH_DISTRIBUTE
      operators::distributed::prefetch("Ids", "Weight", table_names, epmap,
                                       height_sections, context);
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");

      auto weight_mat = EigenMatrix<T>::From(*(weight->Get<T>()));
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        std::vector<int64_t>::iterator it =
            std::find(labels.begin(), labels.end(), sample_labels_data[i]);
        int idx = std::distance(labels.begin(), it);

        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(idx, 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
T
tangwei12 已提交
197 198

      context.scope().DeleteScope(&local_scope);
T
tangwei12 已提交
199 200 201 202 203 204 205 206 207 208 209 210
#endif
    } else {
      auto weight_mat =
          EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(sample_labels_data[i], 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
W
wanghaoshuang 已提交
211
    }
T
tangwei12 已提交
212

W
wanghaoshuang 已提交
213
    // forward cost
214
    for (int64_t i = 0; i < sample_labels->dims()[0]; ++i) {
W
wanghaoshuang 已提交
215 216
      out_data[i] = 0;
      T w = sample_weight == nullptr ? 1. : sample_weight_data[i];
217 218 219 220 221
      for (int64_t j = 0; j < sampled_labels_num; ++j) {
        int64_t target = sample_labels_data[i * sampled_labels_num + j];
        T o = sample_out_data[i * sampled_labels_num + j];
        float b = sampler->Probability(target) * num_neg_samples;
        T cost = (j < num_true_class) ? -log(o / (o + b)) : -log(b / (o + b));
W
wanghaoshuang 已提交
222 223 224
        out_data[i] += w * cost;
      }
    }
225
    delete sampler;
W
wanghaoshuang 已提交
226 227 228
  }
};

Q
QI JUN 已提交
229
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
230 231
class NCEGradKernel : public framework::OpKernel<T> {
 public:
232
  void Compute(const framework::ExecutionContext &context) const override {
W
wanghaoshuang 已提交
233
    auto d_out = context.Input<Tensor>(framework::GradVarName("Cost"));
234
    const T *d_out_data = d_out->data<T>();
W
wanghaoshuang 已提交
235 236
    auto label = context.Input<Tensor>("Label");
    auto sample_out = context.Input<Tensor>("SampleLogits");
237
    const T *sample_out_data = sample_out->data<T>();
W
wanghaoshuang 已提交
238
    auto sample_labels = context.Input<Tensor>("SampleLabels");
239
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
W
wanghaoshuang 已提交
240
    auto sample_weight = context.Input<Tensor>("SampleWeight");
241
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
242 243 244
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
245 246
    int num_neg_samples = context.Attr<int>("num_neg_samples");
    int num_total_classes = context.Attr<int>("num_total_classes");
W
wanghaoshuang 已提交
247 248 249 250
    int num_true_class = 1;
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
251 252 253

    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
254
    Sampler *sampler;
255 256 257 258 259 260 261 262 263 264
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
265 266 267 268 269 270 271 272 273 274 275 276 277
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

        PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
278 279 280 281 282 283
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
284
    Tensor sample_grad;  // tmp tensor
285
    T *sample_grad_data =
W
wanghaoshuang 已提交
286 287
        sample_grad.mutable_data<T>(sample_labels->dims(), context.GetPlace());
    // backward cost
288
    for (int64_t i = 0; i < sample_labels->numel(); ++i) {
289 290 291
      int64_t label_idx = i % sample_labels->dims()[1];
      int64_t sample_idx = i / sample_labels->dims()[1];
      float b = sampler->Probability(sample_labels_data[i]) * num_neg_samples;
W
wanghaoshuang 已提交
292
      T o = sample_out_data[i];
293 294
      T w = sample_weight == nullptr ? 1 : sample_weight_data[sample_idx];
      sample_grad_data[i] = label_idx < num_true_class
W
wanghaoshuang 已提交
295 296
                                ? w * (b / (o + b)) * (o - 1)
                                : w * (o * (1 - o) / (o + b));
297
      sample_grad_data[i] *= d_out_data[sample_idx];
W
wanghaoshuang 已提交
298
    }
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

    bool is_sparse = context.Attr<bool>("is_sparse");

    if (!is_sparse) {
      // get d_bias
      auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias"));
      if (d_bias != nullptr) {
        T *d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
        std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0);
        for (int64_t i = 0; i < sample_labels->numel(); ++i) {
          d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
        }
      }
      // get d_w
      auto d_w = context.Output<Tensor>(framework::GradVarName("Weight"));
      if (d_w != nullptr) {
        auto d_w_data = d_w->mutable_data<T>(context.GetPlace());
        std::fill(d_w_data, d_w_data + d_w->numel(), 0.0);
        auto d_w_matrix = EigenMatrix<T>::From(*d_w);
        auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
        for (int64_t i = 0; i < sample_labels->numel(); ++i) {
          d_w_matrix.chip(sample_labels_data[i], 0) +=
              x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
              sample_grad_data[i];
        }
      }
    } else {
      std::vector<int64_t> labels;
327
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
328
        labels.push_back(sample_labels_data[i]);
W
wanghaoshuang 已提交
329
      }
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

      auto *bias_var = context.InputVar("Bias");
      DDim bias_dim;
      if (bias_var->IsType<LoDTensor>()) {
        bias_dim = context.Input<LoDTensor>("Bias")->dims();
      } else if (bias_var->IsType<SelectedRows>()) {
        auto *table_t = context.Input<SelectedRows>("Bias");
        bias_dim = table_t->value().dims();
      } else {
        PADDLE_THROW(
            "The parameter Bias of a NCE_OP "
            "must be either LoDTensor or SelectedRows");
      }

      auto d_bias =
          context.Output<SelectedRows>(framework::GradVarName("Bias"));
      d_bias->set_rows(labels);
      d_bias->set_height(bias_dim[0]);

      d_bias->mutable_value()->Resize(
          {static_cast<int64_t>(labels.size()), bias_dim[1]});
      T *d_bias_data =
          d_bias->mutable_value()->mutable_data<T>(context.GetPlace());
      std::fill(d_bias_data, d_bias_data + labels.size(), 0.0);
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        d_bias_data[d_bias->Index(sample_labels_data[i])] +=
            sample_grad_data[i];
      }

      auto *table_var = context.InputVar("Weight");
      DDim table_dim;
      if (table_var->IsType<LoDTensor>()) {
        table_dim = context.Input<LoDTensor>("Weight")->dims();
      } else if (table_var->IsType<SelectedRows>()) {
        auto *table_t = context.Input<SelectedRows>("Weight");
        table_dim = table_t->value().dims();
      } else {
        PADDLE_THROW(
            "The parameter Weight of a NCE_OP "
            "must be either LoDTensor or SelectedRows");
      }

      auto d_w = context.Output<SelectedRows>(framework::GradVarName("Weight"));

      d_w->set_rows(labels);
      d_w->set_height(table_dim[0]);

      auto *d_table_value = d_w->mutable_value();
      d_table_value->Resize(
          {static_cast<int64_t>(labels.size()), table_dim[1]});
      auto d_w_data = d_table_value->mutable_data<T>(context.GetPlace());
      std::fill(d_w_data, d_w_data + d_table_value->numel(), 0.0);

      auto d_w_matrix = EigenMatrix<T>::From(*d_table_value);
W
wanghaoshuang 已提交
386
      auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
387
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
388
        d_w_matrix.chip(d_w->Index(sample_labels_data[i]), 0) +=
389
            x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
W
wanghaoshuang 已提交
390 391 392
            sample_grad_data[i];
      }
    }
393

W
wanghaoshuang 已提交
394
    // get d_x
W
wanghaoshuang 已提交
395
    auto d_x = context.Output<Tensor>(framework::GradVarName("Input"));
W
wanghaoshuang 已提交
396
    if (d_x != nullptr) {
397
      auto *d_x_data = d_x->mutable_data<T>(context.GetPlace());
Y
Yang Yu 已提交
398
      std::fill(d_x_data, d_x_data + d_x->numel(), 0.0);
W
wanghaoshuang 已提交
399
      auto d_x_matrix = EigenMatrix<T>::From(*d_x);
W
wanghaoshuang 已提交
400
      auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
401
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
402
        d_x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) +=
W
wanghaoshuang 已提交
403 404 405
            w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i];
      }
    }
406

407
    delete sampler;
W
wanghaoshuang 已提交
408 409 410 411
  }
};
}  // namespace operators
}  // namespace paddle