multiary.h 18.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
namespace phi {
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// Common InferMeta Functions for multiary operators, The format like:
//
//   1. The number of input MetaTensor is more than 3:
//      void [FunctionDesc|OpName]InferMeta(const MetaTensor& x,
//                                          const MetaTensor& y,
//                                          const MetaTensor& z,
//                                          const MetaTensor& w,
//                                          ...,
//                                          MetaTensor* out) {}
//
//   2. There are `const vector<MetaTensor*>&` in params:
//      void [FunctionDesc|OpName]InferMeta(const vector<MetaTensor*>& x,
//                                          ...,
//                                          MetaTensor* out) {}
//
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

38 39
std::vector<DDim> GetMetaTensorsDim(
    const std::vector<const MetaTensor*>& tensors);
40

F
From00 已提交
41 42 43 44 45 46 47 48 49 50
void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
                       float rho,
                       float epsilon,
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
                       MetaTensor* avg_squared_update_out);

H
hong 已提交
51 52 53 54 55 56 57 58
void AdagradInferMeta(const MetaTensor& param,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
                      float epsilon,
                      MetaTensor* param_out,
                      MetaTensor* moment_out);

F
From00 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
                     float beta1,
                     float beta2,
                     float epsilon,
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
                     MetaTensor* inf_norm_out);

72 73 74 75 76 77 78
void AdamInferMeta(const MetaTensor& param,
                   const MetaTensor& grad,
                   const MetaTensor& learning_rate,
                   const MetaTensor& moment1,
                   const MetaTensor& moment2,
                   const MetaTensor& beta1_pow,
                   const MetaTensor& beta2_pow,
79 80
                   const MetaTensor& master_param,
                   const MetaTensor& skip_update,
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
                   const Scalar& beta1,
                   const Scalar& beta2,
                   const Scalar& epsilon,
                   bool lazy_mode,
                   int64_t min_row_size_to_use_multithread,
                   bool multi_precision,
                   bool use_global_beta_pow,
                   MetaTensor* param_out,
                   MetaTensor* moment1_out,
                   MetaTensor* moment2_out,
                   MetaTensor* beta1_pow_out,
                   MetaTensor* beta2_pow_out,
                   MetaTensor* master_param_outs);

void AdamwInferMeta(const MetaTensor& param,
                    const MetaTensor& grad,
                    const MetaTensor& learning_rate,
                    const MetaTensor& moment1,
                    const MetaTensor& moment2,
                    const MetaTensor& beta1_pow,
                    const MetaTensor& beta2_pow,
102 103
                    const MetaTensor& master_param,
                    const MetaTensor& skip_update,
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                    const Scalar& beta1,
                    const Scalar& beta2,
                    const Scalar& epsilon,
                    float lr_ratio,
                    float coeff,
                    bool with_decay,
                    bool lazy_mode,
                    int64_t min_row_size_to_use_multithread,
                    bool multi_precision,
                    bool use_global_beta_pow,
                    MetaTensor* param_out,
                    MetaTensor* moment1_out,
                    MetaTensor* moment2_out,
                    MetaTensor* beta1_pow_out,
                    MetaTensor* beta2_pow_out,
                    MetaTensor* master_param_outs);

121
void AddNInferMeta(const std::vector<const MetaTensor*>& x,
122 123 124
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

125 126 127 128 129 130 131 132 133 134 135 136
void AucInferMeta(const MetaTensor& input,
                  const MetaTensor& label,
                  const MetaTensor& stat_pos,
                  const MetaTensor& stat_neg,
                  const std::string& curve,
                  int num_thresholds,
                  int slide_steps,
                  MetaTensor* auc,
                  MetaTensor* stat_pos_out,
                  MetaTensor* stat_neg_out,
                  MetaConfig config = MetaConfig());

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
void AverageAccumulatesInferMeta(const MetaTensor& param,
                                 const MetaTensor& in_sum_1,
                                 const MetaTensor& in_sum_2,
                                 const MetaTensor& in_sum_3,
                                 const MetaTensor& in_num_accumulates,
                                 const MetaTensor& in_old_num_accumulates,
                                 const MetaTensor& in_num_updates,
                                 float average_window,
                                 int64_t max_average_window,
                                 int64_t min_average_window,
                                 MetaTensor* out_sum_1,
                                 MetaTensor* out_sum_2,
                                 MetaTensor* out_sum_3,
                                 MetaTensor* out_num_accumulates,
                                 MetaTensor* out_old_num_accumulates,
                                 MetaTensor* out_num_updates);

H
hong 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
void BatchNormInferMeta(const MetaTensor& x,
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        const MetaTensor& mean,
                        const MetaTensor& variance,
                        float momentum,
                        float epsilon,
                        const std::string& data_layout,
                        bool is_test,
                        bool use_global_stats,
                        bool trainable_statistics,
                        bool fuse_with_relu,
                        MetaTensor* y,
                        MetaTensor* mean_out,
                        MetaTensor* variance_out,
                        MetaTensor* saved_mean,
                        MetaTensor* saved_variance,
                        MetaTensor* reserve_space,
                        MetaConfig config = MetaConfig());

174 175 176 177 178 179 180 181 182 183 184 185 186
void BatchNormInferInferMeta(const MetaTensor& x,
                             const MetaTensor& scale,
                             const MetaTensor& bias,
                             const MetaTensor& mean,
                             const MetaTensor& variance,
                             float momentum,
                             float epsilon,
                             const std::string& data_layout,
                             MetaTensor* y,
                             MetaTensor* mean_out,
                             MetaTensor* variance_out,
                             MetaConfig config = MetaConfig());

187 188 189
void BilinearTensorProductInferMeta(const MetaTensor& x,
                                    const MetaTensor& y,
                                    const MetaTensor& weight,
190
                                    const MetaTensor& bias,
191 192 193
                                    MetaTensor* out,
                                    MetaConfig config = MetaConfig());

194
void BroadcastTensorsInferMeta(const std::vector<const MetaTensor*>& x,
195 196
                               std::vector<MetaTensor*> out);

197
void ConcatInferMeta(const std::vector<const MetaTensor*>& x,
198 199 200
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
201

202 203 204
void DeformableConvInferMeta(const MetaTensor& x,
                             const MetaTensor& offset,
                             const MetaTensor& filter,
205
                             const MetaTensor& mask,
206 207 208 209 210 211 212 213 214
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
                             const std::vector<int>& dilations,
                             int deformable_groups,
                             int groups,
                             int im2col_step,
                             MetaTensor* out,
                             MetaConfig config = MetaConfig());

215 216 217
void HierarchicalSigmoidInferMeta(const MetaTensor& x,
                                  const MetaTensor& w,
                                  const MetaTensor& label,
218 219 220
                                  const MetaTensor& path,
                                  const MetaTensor& code,
                                  const MetaTensor& bias,
221 222 223 224 225 226 227 228 229 230 231
                                  int num_classes,
                                  bool remote_prefetch,
                                  int trainer_id,
                                  const std::vector<int64_t>& height_sections,
                                  const std::vector<std::string>& epmap,
                                  const std::vector<std::string>& table_names,
                                  bool is_sparse,
                                  MetaTensor* out,
                                  MetaTensor* pre_out,
                                  MetaTensor* w_out);

232 233
void InterpolateInferMeta(
    const MetaTensor& x,
234 235 236
    const MetaTensor& out_size,
    const paddle::optional<std::vector<const MetaTensor*>>& size_tensor,
    const MetaTensor& scale_tensor,
237 238 239 240 241 242 243 244 245 246 247
    const std::string& data_layout,
    int out_d,
    int out_h,
    int out_w,
    const std::vector<float>& scale,
    const std::string& interp_method,
    bool align_corners,
    int align_mode,
    MetaTensor* output,
    MetaConfig config = MetaConfig());

248 249 250 251 252 253
void LogspaceInferMeta(const MetaTensor& start,
                       const MetaTensor& stop,
                       const MetaTensor& number,
                       const MetaTensor& base,
                       MetaTensor* out);

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
void MergedAdamInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& learning_rate,
    const std::vector<const MetaTensor*>& moment1,
    const std::vector<const MetaTensor*>& moment2,
    const std::vector<const MetaTensor*>& beta1_pow,
    const std::vector<const MetaTensor*>& beta2_pow,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool multi_precision,
    bool use_global_beta_pow,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> moment1_out,
    std::vector<MetaTensor*> moment2_out,
    std::vector<MetaTensor*> beta1_pow_out,
    std::vector<MetaTensor*> beta2_pow_out,
    std::vector<MetaTensor*> master_param_out);

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
void MergedMomentumInferMeta(
    const std::vector<const MetaTensor*>& param,
    const std::vector<const MetaTensor*>& grad,
    const std::vector<const MetaTensor*>& velocity,
    const std::vector<const MetaTensor*>& learning_rate,
    const paddle::optional<std::vector<const MetaTensor*>>& master_param,
    float mu,
    bool use_nesterov,
    const std::vector<std::string>& regularization_method,
    const std::vector<float>& regularization_coeff,
    bool multi_precision,
    float rescale_grad,
    std::vector<MetaTensor*> param_out,
    std::vector<MetaTensor*> velocity_out,
    std::vector<MetaTensor*> master_param_out);

291
void MeshgridInferMeta(const std::vector<const MetaTensor*>& inputs,
H
hong 已提交
292 293
                       std::vector<MetaTensor*> outputs);

294 295 296 297
void MomentumInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& velocity,
                       const MetaTensor& learning_rate,
298
                       const MetaTensor& master_param,
299 300 301 302 303 304 305 306 307 308
                       float mu,
                       bool use_nesterov,
                       const std::string& regularization_method,
                       float regularization_coeff,
                       bool multi_precision,
                       float rescale_grad,
                       MetaTensor* param_out,
                       MetaTensor* velocity_out,
                       MetaTensor* master_param_out);

309 310
void MultiDotInferMeta(const std::vector<const MetaTensor*>& x,
                       MetaTensor* out);
311

312
void MultiplexInferMeta(const std::vector<const MetaTensor*>& ins,
313 314 315
                        const MetaTensor& ids,
                        MetaTensor* out);

F
From00 已提交
316 317
void PsroiPoolInferMeta(const MetaTensor& x,
                        const MetaTensor& rois,
318
                        const MetaTensor& rois_num,
F
From00 已提交
319 320 321 322 323 324
                        int pooled_height,
                        int pooled_width,
                        int output_channels,
                        float spatial_scale,
                        MetaTensor* out);

H
hong 已提交
325 326 327 328 329
void RmspropInferMeta(const MetaTensor& param,
                      const MetaTensor& mean_square,
                      const MetaTensor& grad,
                      const MetaTensor& moment,
                      const MetaTensor& learning_rate,
330
                      const MetaTensor& mean_grad,
H
hong 已提交
331 332 333 334 335 336 337 338 339
                      float epsilon,
                      float decay,
                      float momentum,
                      bool centered,
                      MetaTensor* param_out,
                      MetaTensor* moment_out,
                      MetaTensor* mean_square_out,
                      MetaTensor* mean_grad_out);

340
void RnnInferMeta(const MetaTensor& x,
341 342
                  const std::vector<const MetaTensor*>& pre_state,
                  const std::vector<const MetaTensor*>& weight_list,
343
                  const MetaTensor& sequence_length,
344 345 346 347 348 349 350 351 352 353 354 355 356
                  float dropout_prob,
                  bool is_bidirec,
                  int input_size,
                  int hidden_size,
                  int num_layers,
                  const std::string& mode,
                  int seed,
                  bool is_test,
                  MetaTensor* out,
                  MetaTensor* dropout_state,
                  std::vector<MetaTensor*> state,
                  MetaTensor* reserve);

Z
zyfncg 已提交
357
void SgdInferMeta(const MetaTensor& param,
H
hong 已提交
358 359
                  const MetaTensor& learning_rate,
                  const MetaTensor& grad,
360
                  const MetaTensor& master_param,
H
hong 已提交
361 362 363 364
                  bool multi_precision,
                  MetaTensor* param_out,
                  MetaTensor* master_param_out);

365
void StackInferMeta(const std::vector<const MetaTensor*>& x,
C
csy0225 已提交
366 367 368
                    int axis,
                    MetaTensor* out);

369
void UnchangedMultiInferMeta(const std::vector<const MetaTensor*>& x,
370 371
                             std::vector<MetaTensor*> out);

0
0x45f 已提交
372 373
void WarpctcInferMeta(const MetaTensor& logits,
                      const MetaTensor& label,
374 375
                      const MetaTensor& logits_length,
                      const MetaTensor& labels_length,
0
0x45f 已提交
376 377
                      int blank,
                      bool norm_by_times,
Z
Zhong Hui 已提交
378
                      MetaTensor* warpctcgrad,
0
0x45f 已提交
379 380
                      MetaTensor* loss);

381 382 383 384
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out);
385

S
Siming Dai 已提交
386 387 388
void GraphReindexInferMeta(const MetaTensor& x,
                           const MetaTensor& neighbors,
                           const MetaTensor& count,
389 390
                           const MetaTensor& hashtable_value,
                           const MetaTensor& hashtable_index,
S
Siming Dai 已提交
391 392 393 394 395
                           bool flag_buffer_hashtable,
                           MetaTensor* reindex_src,
                           MetaTensor* reindex_dst,
                           MetaTensor* out_nodes);

396 397 398 399 400 401 402 403 404 405 406
void GraphSampleNeighborsInferMeta(const MetaTensor& row,
                                   const MetaTensor& col_ptr,
                                   const MetaTensor& x,
                                   const MetaTensor& eids,
                                   const MetaTensor& perm_buffer,
                                   int sample_size,
                                   bool return_eids,
                                   bool flag_perm_buffer,
                                   MetaTensor* out,
                                   MetaTensor* out_count,
                                   MetaTensor* out_eids);
S
Siming Dai 已提交
407

408 409 410
void Yolov3LossInferMeta(const MetaTensor& x,
                         const MetaTensor& gt_box,
                         const MetaTensor& gt_label,
411
                         const MetaTensor& gt_score,
412 413 414 415 416 417 418 419 420 421 422
                         const std::vector<int>& anchors,
                         const std::vector<int>& anchor_mask,
                         int class_num,
                         float ignore_thresh,
                         int downsample_ratio,
                         bool use_label_smooth,
                         float scale_x_y,
                         MetaTensor* loss,
                         MetaTensor* objectness_mask,
                         MetaTensor* gt_match_mask);

423
}  // namespace phi