svd_op.h 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <cstdarg>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/operators/svd_helper.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using DDim = framework::DDim;

template <typename T>
class SvdCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* x = context.Input<Tensor>("X");
    Tensor* U = context.Output<Tensor>("U");
    Tensor* VH = context.Output<Tensor>("VH");
    Tensor* S = context.Output<Tensor>("S");
    int full = context.Attr<bool>("full_matrices");

    /*Create Tensors and output, set the dim ...*/
    auto numel = x->numel();
    auto* x_data = x->data<T>();
    auto x_dims = x->dims();
    int rows = x_dims[x_dims.size() - 2];
    int cols = x_dims[x_dims.size() - 1];
    int k = std::min(rows, cols);
    int col_u = full ? rows : k;
    int col_v = full ? cols : k;
    int batches = numel / (rows * cols);
    auto* U_out = U->mutable_data<math::Real<T>>(
        context.GetPlace(),
        size_t(batches * rows * col_u * sizeof(math::Real<T>)));
    auto* VH_out = VH->mutable_data<math::Real<T>>(
        context.GetPlace(),
        size_t(batches * col_v * cols * sizeof(math::Real<T>)));
    auto* S_out = S->mutable_data<math::Real<T>>(
        context.GetPlace(), size_t(batches * k * sizeof(math::Real<T>)));

    /*SVD Use the Eigen Library*/
    math::BatchSvd<T>(x_data, U_out, VH_out, S_out, rows, cols, batches, full);
  }
};

template <typename DeviceContext, typename T>
class SvdGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    const framework::Tensor& U_const = *ctx.Input<framework::Tensor>("U");
    const framework::Tensor& VH_const = *ctx.Input<framework::Tensor>("VH");
    const framework::Tensor& S = *ctx.Input<framework::Tensor>("S");
    framework::Tensor& dX =
        *ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    const framework::Tensor& dU_const =
        *ctx.Input<framework::Tensor>(framework::GradVarName("U"));
    const framework::Tensor& dVH_const =
        *ctx.Input<framework::Tensor>(framework::GradVarName("VH"));

    const bool full = ctx.Attr<bool>("full_matrices");
    int m = dX.dims()[dX.dims().size() - 2];
    int n = dX.dims()[dX.dims().size() - 1];
    int k = S.dims()[S.dims().size() - 1];
    auto dito = math::DeviceIndependenceTensorOperations<DeviceContext, T>(ctx);
    framework::Tensor U, VH, dU, dV, dVH;
    if (full) {
      // if full_matrices is set, slice the U and VT to k columns
      U = dito.Slice(U_const, {-1}, {0}, {k});
      VH = dito.Slice(VH_const, {-2}, {0}, {k});
      dU = dito.Slice(dU_const, {-1}, {0}, {k});
      dVH = dito.Slice(dVH_const, {-2}, {0}, {k});
    } else {
      U = U_const;
      VH = VH_const;
      dU = dU_const;
      dVH = dVH_const;
    }
    auto s_inverse = dito.Pow(S, -1);
    auto s_square = dito.Pow(S, 2);
    auto F =
        dito.Sub(dito.Unsqueeze(s_square, -2), dito.Unsqueeze(s_square, -1));
    F = dito.Add(F, dito.Diag(dito.Infinits({k}, U.type())));
    F = dito.Pow(F, -1);
    Tensor sigma_term;
    Tensor u_term;
    Tensor v_term;

    if (ctx.HasInput(framework::GradVarName("S"))) {
      const framework::Tensor& gS =
          *ctx.Input<framework::Tensor>(framework::GradVarName("S"));
      sigma_term = dito.Mul(dito.Unsqueeze(gS, -2), U);
      sigma_term = dito.Matmul(sigma_term, VH);
    }

    if (ctx.HasInput(framework::GradVarName("U"))) {
      auto UTG = dito.Matmul(U, dU, true, false);
      auto GTU = dito.Matmul(dU, U, true, false);
      u_term = dito.Mul(dito.Mul(dito.Sub(UTG, GTU), F), dito.Unsqueeze(S, -2));
      u_term = dito.Matmul(U, u_term);
      if (m > k) {
        auto project =
            dito.Sub(dito.Eye(m, U.type()), dito.Matmul(U, U, false, true));
        u_term = dito.Add(u_term, dito.Mul(dito.Matmul(project, dU),
                                           dito.Unsqueeze(s_inverse, -2)));
      }
      u_term = dito.Matmul(u_term, VH);
    }

    if (ctx.HasInput(framework::GradVarName("VH"))) {
      auto UTG = dito.Matmul(VH, dVH, false, true);
      auto GTU = dito.Matmul(dVH, VH, false, true);
      v_term = dito.Mul(dito.Matmul(dito.Mul(dito.Sub(UTG, GTU), F), VH),
                        dito.Unsqueeze(S, -1));
      if (n > k) {
        auto project =
            dito.Sub(dito.Eye(n, U.type()), dito.Matmul(VH, VH, true, false));
        v_term = dito.Add(v_term, dito.Mul(dito.Matmul(dVH, project),
                                           dito.Unsqueeze(s_inverse, -1)));
      }
      v_term = dito.Matmul(U, v_term);
    }

    dX.ShareDataWith(dito.Add(dito.Add(u_term, sigma_term), v_term));
  }
};

}  // namespace operators
}  // namespace paddle