test_inplace.py 16.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle
import paddle.fluid.core as core
22
from paddle.fluid.framework import _test_eager_guard, in_dygraph_mode
23 24 25


class TestInplace(unittest.TestCase):
26
    def func_test_forward_version(self):
27 28 29 30 31 32 33
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(np.ones((4, 2, 3)).astype(np.float32))
            self.assertEqual(var.inplace_version, 0)

            var[0] = 1.1
            self.assertEqual(var.inplace_version, 1)

34
            paddle.assign(paddle.ones(shape=[3]), var)
35 36 37 38 39 40 41 42

            # NOTE(liym27): assign(input, output) is an inplace operation for output.
            # There is inplace-related processing for api assign, var.inplace_version should be 2 not 1.
            self.assertEqual(var.inplace_version, 2)

            var[2] = 3
            self.assertEqual(var.inplace_version, 3)

43 44 45 46 47 48
    def test_forward_version(self):
        with _test_eager_guard():
            self.func_test_forward_version()
        self.func_test_forward_version()

    def func_test_backward_error(self):
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        # It raises an error because the inplace operator will result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            var_b[1:2] = 3.3  # var_b is modified inplace after using it

            var_d = var_b**2

            loss = paddle.nn.functional.relu(var_c + var_d)
64 65 66 67 68
            with self.assertRaisesRegexp(
                    RuntimeError,
                    "received tensor_version:{} != wrapper_version_snapshot:{}".
                    format(1, 0)):
                loss.backward()
69

70 71 72 73 74 75
    def test_backward_error(self):
        with _test_eager_guard():
            self.func_test_backward_error()
        self.func_test_backward_error()

    def func_test_backward_success_1(self):
76 77 78 79 80 81 82 83 84 85 86 87 88 89
        # var_b is modified inplace before using it, the inplace operator doesn't result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2
            var_b[1:2] = 3  # var_b is modified inplace before using it

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            loss = var_c.sum()
            loss.backward()

90 91 92 93 94 95
    def test_backward_success_1(self):
        with _test_eager_guard():
            self.func_test_backward_success_1()
        self.func_test_backward_success_1()

    def func_test_backward_success_2(self):
96 97 98 99 100 101 102 103 104 105
        # Although var_b is modified inplace after using it, it does not used in gradient computation.
        # The inplace operator doesn't result in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2

            var_b[1:2] = 3  # var_b is modified inplace before using it

106
            var_c = var_b + var_b  # Here, the grad op of sum doesn't use the value of var_b
107 108 109 110 111 112
            loss = var_c.sum()

            var_b[1:2] = 3  # var_b is modified inplace after using it

            loss.backward()

113
    def test_backward_success_2(self):
114 115
        with _test_eager_guard():
            self.func_test_backward_success_2()
116 117
        self.func_test_backward_success_2()

118

119 120 121
class TestDygraphInplace(unittest.TestCase):
    def setUp(self):
        self.init_data()
122
        self.set_np_compare_func()
123 124

    def init_data(self):
125
        self.input_var_numpy = np.random.uniform(-5, 5, [10, 20, 1])
126 127
        self.dtype = "float32"

128 129 130
    def set_np_compare_func(self):
        self.np_compare = np.array_equal

131 132 133 134 135 136
    def non_inplace_api_processing(self, var):
        return paddle.squeeze(var)

    def inplace_api_processing(self, var):
        return paddle.squeeze_(var)

137
    def func_test_inplace_api(self):
138 139 140 141 142 143 144
        var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
        inplace_var = self.inplace_api_processing(var)
        self.assertTrue(id(var) == id(inplace_var))

        inplace_var[0] = 2.
        self.assertTrue(np.array_equal(var.numpy(), inplace_var.numpy()))

145 146 147 148 149 150
    def test_inplace_api(self):
        with _test_eager_guard():
            self.func_test_inplace_api()
        self.func_test_inplace_api()

    def func_test_forward_version(self):
151 152 153 154 155 156 157 158 159 160 161 162 163
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            self.assertEqual(var.inplace_version, 0)

            inplace_var = self.inplace_api_processing(var)
            self.assertEqual(var.inplace_version, 1)

            inplace_var[0] = 2.
            self.assertEqual(var.inplace_version, 2)

            inplace_var = self.inplace_api_processing(inplace_var)
            self.assertEqual(var.inplace_version, 3)

164 165 166 167 168 169
    def test_forward_version(self):
        with _test_eager_guard():
            self.func_test_forward_version()
        self.func_test_forward_version()

    def func_test_leaf_inplace_var_error(self):
170 171 172 173 174 175 176 177 178
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var.stop_gradient = False

            def leaf_inplace_error():
                self.inplace_api_processing(var)

            self.assertRaises(ValueError, leaf_inplace_error)

179 180 181 182 183 184
    def test_leaf_inplace_var_error(self):
        with _test_eager_guard():
            self.func_test_leaf_inplace_var_error()
        self.func_test_leaf_inplace_var_error()

    def func_test_backward_error(self):
185 186 187 188 189 190 191 192 193 194 195 196 197
        # It raises an error because the inplace operator will result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            self.inplace_api_processing(var_b)

            loss = paddle.nn.functional.relu(var_c)
198 199 200 201 202
            with self.assertRaisesRegexp(
                    RuntimeError,
                    "received tensor_version:{} != wrapper_version_snapshot:{}".
                    format(1, 0)):
                loss.backward()
203

204 205 206 207 208 209
    def test_backward_error(self):
        with _test_eager_guard():
            self.func_test_backward_error()
        self.func_test_backward_error()

    def func_test_backward_success_1(self):
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        # var_b is modified inplace before using it, the inplace operator doesn't result
        # in incorrect gradient computation.
        grad_var_a, grad_var_a_inplace = 0, 1
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2
            var_c = self.inplace_api_processing(
                var_b)  # var_b is modified inplace before using it

            # Here, the gradient computation will use the value of var_b
            var_d = var_c**2
            loss = var_d.sum()
            loss.backward()
225
            grad_var_a_inplace = var_a.grad.numpy()
226 227 228 229 230 231 232 233 234 235

        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2
            var_c = self.non_inplace_api_processing(var_b)
            var_d = var_c**2
            loss = var_d.sum()
            loss.backward()
236
            grad_var_a = var_a.grad.numpy()
237

238
        self.assertTrue(self.np_compare(grad_var_a_inplace, grad_var_a))
239

240 241 242 243 244 245
    def test_backward_success_1(self):
        with _test_eager_guard():
            self.func_test_backward_success_1()
        self.func_test_backward_success_1()

    def func_test_backward_success_2(self):
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
        # Although var_b is modified inplace after using it, it does not used in gradient computation.
        # The inplace operator doesn't result in incorrect gradient computation.
        grad_var_a, grad_var_a_inplace = 0, 1
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

            var_c = self.inplace_api_processing(
                var_b)  # var_b is modified inplace before using it

            var_d = var_c + var_c  # Here, the grad op of sum doesn't use the value of var_b
            loss = var_d.sum()

            loss.backward()
262
            grad_var_a_inplace = var_a.grad.numpy()
263 264 265 266 267 268 269

        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

270
            var_c = self.non_inplace_api_processing(var_b)
271 272 273 274 275

            var_d = var_c + var_c  # Here, the grad op of sum doesn't use the value of var_b
            loss = var_d.sum()

            loss.backward()
276
            grad_var_a = var_a.grad.numpy()
277 278
        self.assertTrue(np.array_equal(grad_var_a_inplace, grad_var_a))

279 280 281 282 283
    def test_backward_success_2(self):
        with _test_eager_guard():
            self.func_test_backward_success_2()
        self.func_test_backward_success_2()

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

class TestDygraphInplaceUnsqueeze(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.unsqueeze(var, -1)

    def inplace_api_processing(self, var):
        return paddle.unsqueeze_(var, -1)


class TestDygraphInplaceReshape(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.reshape(var, [-1])

    def inplace_api_processing(self, var):
        return paddle.reshape_(var, [-1])


301 302 303 304 305 306 307 308
class TestDygraphInplaceFlatten(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.flatten()

    def inplace_api_processing(self, var):
        return var.flatten_()


309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
class TestDygraphInplaceScatter(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.array([[1, 1], [2, 2], [3, 3]])
        self.dtype = "float32"

    def non_inplace_api_processing(self, var):
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
        updates = paddle.to_tensor(
            [[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')

        return paddle.scatter(var, index, updates, overwrite=False)

    def inplace_api_processing(self, var):
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
        updates = paddle.to_tensor(
            [[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')

        return paddle.scatter_(var, index, updates, overwrite=False)


class TestDygraphInplaceElu(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.elu(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.elu_(var)


class TestDygraphInplaceRelu(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.relu(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.relu_(var)


class TestDygraphInplaceSoftmax(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.softmax(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.softmax_(var)


class TestDygraphInplaceTanh(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.tanh(var)

    def inplace_api_processing(self, var):
        return paddle.tanh_(var)


361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
class TestDygraphInplaceCeil(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.ceil()

    def inplace_api_processing(self, var):
        return var.ceil_()


class TestDygraphInplaceFloor(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.floor()

    def inplace_api_processing(self, var):
        return var.floor_()


class TestDygraphInplaceExp(TestDygraphInplace):
    def set_np_compare_func(self):
        self.np_compare = np.allclose

    def non_inplace_api_processing(self, var):
        return var.exp()

    def inplace_api_processing(self, var):
        return var.exp_()


class TestDygraphInplaceReciprocal(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.reciprocal()

    def inplace_api_processing(self, var):
        return var.reciprocal_()


class TestDygraphInplaceRound(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.round()

    def inplace_api_processing(self, var):
        return var.round_()


class TestDygraphInplaceSqrt(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.random.uniform(0, 5, [10, 20, 1])
        self.dtype = "float32"

    def non_inplace_api_processing(self, var):
        return var.sqrt()

    def inplace_api_processing(self, var):
        return var.sqrt_()


class TestDygraphInplaceRsqrt(TestDygraphInplaceSqrt):
    def non_inplace_api_processing(self, var):
        return var.rsqrt()

    def inplace_api_processing(self, var):
        return var.rsqrt_()


class TestDygraphInplaceClip(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.clip(0.6, 1.5)

    def inplace_api_processing(self, var):
        return var.clip_(0.6, 1.5)


class TestDygraphInplaceScale(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.scale(scale=2.0, bias=3.0)

    def inplace_api_processing(self, var):
        return var.scale_(scale=2.0, bias=3.0)


class TestDygraphInplaceAdd(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.random.rand(2, 3, 4)
        self.dtype = "float32"
444
        self.input_var_numpy_2 = np.random.rand(2, 3, 4).astype(self.dtype)
445 446

    def non_inplace_api_processing(self, var):
447 448
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.add(input_var_2)
449 450

    def inplace_api_processing(self, var):
451 452
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.add_(input_var_2)
453 454 455 456


class TestDygraphInplaceSubtract(TestDygraphInplaceAdd):
    def non_inplace_api_processing(self, var):
457 458
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.subtract(input_var_2)
459 460

    def inplace_api_processing(self, var):
461 462
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.subtract_(input_var_2)
463 464


465
class TestLossIsInplaceVar(unittest.TestCase):
466
    def func_test_loss_is_inplace_var(self):
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones((2, 2))
            var_a.stop_gradient = False

            var_b = var_a * 2
            loss = var_b.tanh_()

            loss.backward()
            inplace_grad_var_a = var_a.grad.numpy()

        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones((2, 2))
            var_a.stop_gradient = False

            var_b = var_a * 2
            loss = var_b.tanh()

            loss.backward()
            grad_var_a = var_a.grad.numpy()

        self.assertTrue(np.array_equal(inplace_grad_var_a, grad_var_a))

489 490 491 492 493
    def test_loss_is_inplace_var(self):
        with _test_eager_guard():
            self.func_test_loss_is_inplace_var()
        self.func_test_loss_is_inplace_var()

494

495
class TestContinuouslyInplace(unittest.TestCase):
496
    def func_test_continuously_inplace(self):
497 498 499 500 501 502 503 504 505 506
        a = paddle.rand([2, 3])
        a.stop_gradient = False
        b = a * 2

        b.reshape_([-1])
        b.reshape_([2, 3])
        b.reshape_([-1])

        b.backward()

507 508 509 510 511
    def test_continuously_inplace(self):
        with _test_eager_guard():
            self.func_test_continuously_inplace()
        self.func_test_continuously_inplace()

512

513 514
if __name__ == '__main__':
    unittest.main()