sequence_softmax_op.cc 6.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_softmax_op.h"
16
#include <string>
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class SequenceSoftmaxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
26 27 28 29
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceSoftmaxOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SequenceSoftmaxOp should not be null.");
30 31

    ctx->ShareDim("X", /*->*/ "Out");
32
    ctx->ShareLoD("X", /*->*/ "Out");
33
  }
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    bool use_cudnn = ctx.Attr<bool>("use_cudnn");
    bool runtime_cudnn_support = false;
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
    }
#endif
    framework::LibraryType library_ = framework::LibraryType::kPlain;
    if (use_cudnn && runtime_cudnn_support) {
      library_ = framework::LibraryType::kCUDNN;
    }
    std::string data_format = ctx.Attr<std::string>("data_format");
    return framework::OpKernelType(
54
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
55 56
        framework::StringToDataLayout(data_format), library_);
  }
57 58 59 60
};

class SequenceSoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
61
  void Make() override {
62 63 64 65 66 67
    AddInput("X",
             "(LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension "
             "of length 1.");
    AddOutput("Out",
              "(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension "
              "of length 1.");
68 69 70 71 72 73 74 75 76 77 78
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
79
    AddComment(R"DOC(
80 81 82
Sequence Softmax Operator.

SequenceSoftmaxOp computes the softmax activation among all time-steps for each
83
sequence. The dimension of each time-step should be 1. Thus, the shape of
84 85
input Tensor can be either [N, 1] or [N], where N is the sum of the length
of all sequences.
86

87
The algorithm works as follows:
W
whs 已提交
88

89
    for i-th sequence in a mini-batch:
W
whs 已提交
90 91 92 93 94 95

$$
Out(X[lod[i]:lod[i+1]], :) = \
\frac{\exp(X[lod[i]:lod[i+1], :])} \
{\sum(\exp(X[lod[i]:lod[i+1], :]))}
$$
96 97 98

For example, for a mini-batch of 3 sequences with variable-length,
each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
99
then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :]
100
and N turns out to be 7.
101

102 103 104 105 106 107 108 109
)DOC");
  }
};

class SequenceSoftmaxGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

110
  void InferShape(framework::InferShapeContext* ctx) const override {
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    PADDLE_ENFORCE(ctx->HasInput("Out"),
                   "Input(Out) of SequenceSoftmaxGradOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasInput(framework::GradVarName("Out")),
        "Input(Out@GRAD) of SequenceSoftmaxGradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceSoftmaxOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@GRAD) of SequenceSoftmaxOp should not be null.");

    PADDLE_ENFORCE_EQ(
        ctx->GetInputDim("Out"),
        ctx->GetInputDim(framework::GradVarName("Out")),
        "Input(Out) and Input(Out@GRAD) of SequenceSoftmaxGradOp should be of "
        "the same shape.");

    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    bool use_cudnn = ctx.Attr<bool>("use_cudnn");
    bool runtime_cudnn_support = false;
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
    }
#endif
    framework::LibraryType library_ = framework::LibraryType::kPlain;
    if (use_cudnn && runtime_cudnn_support) {
      library_ = framework::LibraryType::kCUDNN;
    }
    std::string data_format = ctx.Attr<std::string>("data_format");
    return framework::OpKernelType(
149
        OperatorWithKernel::IndicateVarDataType(ctx, "Out"), ctx.GetPlace(),
150 151
        framework::StringToDataLayout(data_format), library_);
  }
152 153
};

154
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
155 156
    SequenceSoftmaxGradOpNoNeedBufferVarsInferer, "X");

157 158 159 160
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
161 162 163 164
REGISTER_OPERATOR(
    sequence_softmax, ops::SequenceSoftmaxOp, ops::SequenceSoftmaxOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
165 166
REGISTER_OPERATOR(sequence_softmax_grad, ops::SequenceSoftmaxGradOp,
                  ops::SequenceSoftmaxGradOpNoNeedBufferVarsInferer);
167 168
REGISTER_OP_CPU_KERNEL(
    sequence_softmax,
169 170
    ops::SequenceSoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceSoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
171 172
REGISTER_OP_CPU_KERNEL(
    sequence_softmax_grad,
173 174
    ops::SequenceSoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceSoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);