analyzer_bert_tester.cc 6.0 KB
Newer Older
F
fuchang01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/inference/tests/api/tester_helper.h"
F
fuchang01 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

namespace paddle {
namespace inference {

using paddle::PaddleTensor;

template <typename T>
void GetValueFromStream(std::stringstream *ss, T *t) {
  (*ss) >> (*t);
}

template <>
void GetValueFromStream<std::string>(std::stringstream *ss, std::string *t) {
  *t = ss->str();
}

// Split string to vector
template <typename T>
void Split(const std::string &line, char sep, std::vector<T> *v) {
  std::stringstream ss;
  T t;
  for (auto c : line) {
    if (c != sep) {
      ss << c;
    } else {
      GetValueFromStream<T>(&ss, &t);
      v->push_back(std::move(t));
      ss.str({});
      ss.clear();
    }
  }

  if (!ss.str().empty()) {
    GetValueFromStream<T>(&ss, &t);
    v->push_back(std::move(t));
    ss.str({});
    ss.clear();
  }
}

// Parse tensor from string
template <typename T>
bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) {
  std::vector<std::string> data;
  Split(field, ':', &data);
  if (data.size() < 2) return false;

  std::string shape_str = data[0];

  std::vector<int> shape;
  Split(shape_str, ' ', &shape);

  std::string mat_str = data[1];

  std::vector<T> mat;
  Split(mat_str, ' ', &mat);

  tensor->shape = shape;
  auto size =
      std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
      sizeof(T);
  tensor->data.Resize(size);
  std::copy(mat.begin(), mat.end(), static_cast<T *>(tensor->data.data()));
  tensor->dtype = GetPaddleDType<T>();

  return true;
}

// Parse input tensors from string
bool ParseLine(const std::string &line,
               std::vector<paddle::PaddleTensor> *tensors) {
  std::vector<std::string> fields;
  Split(line, ';', &fields);

  if (fields.size() < 5) return false;

  tensors->clear();
  tensors->reserve(5);

  int i = 0;
  // src_id
  paddle::PaddleTensor src_id;
  ParseTensor<int64_t>(fields[i++], &src_id);
  tensors->push_back(src_id);

  // pos_id
  paddle::PaddleTensor pos_id;
  ParseTensor<int64_t>(fields[i++], &pos_id);
  tensors->push_back(pos_id);

  // segment_id
  paddle::PaddleTensor segment_id;
  ParseTensor<int64_t>(fields[i++], &segment_id);
  tensors->push_back(segment_id);

  // self_attention_bias
  paddle::PaddleTensor self_attention_bias;
  ParseTensor<float>(fields[i++], &self_attention_bias);
  tensors->push_back(self_attention_bias);

  // next_segment_index
  paddle::PaddleTensor next_segment_index;
  ParseTensor<int64_t>(fields[i++], &next_segment_index);
  tensors->push_back(next_segment_index);

  return true;
}

bool LoadInputData(std::vector<std::vector<paddle::PaddleTensor>> *inputs) {
  if (FLAGS_infer_data.empty()) {
    LOG(ERROR) << "please set input data path";
    return false;
  }

  std::ifstream fin(FLAGS_infer_data);
  std::string line;
132
  int sample = 0;
F
fuchang01 已提交
133

134
  // The unit-test dataset only have 10 samples, each sample have 5 feeds.
F
fuchang01 已提交
135 136
  while (std::getline(fin, line)) {
    std::vector<paddle::PaddleTensor> feed_data;
137 138 139 140
    ParseLine(line, &feed_data);
    inputs->push_back(std::move(feed_data));
    sample++;
    if (!FLAGS_test_all_data && sample == FLAGS_batch_size) break;
F
fuchang01 已提交
141
  }
142
  LOG(INFO) << "number of samples: " << sample;
F
fuchang01 已提交
143 144 145 146

  return true;
}

147
void SetConfig(AnalysisConfig *config) { config->SetModel(FLAGS_infer_model); }
F
fuchang01 已提交
148

149
void profile(bool use_mkldnn = false, bool use_ngraph = false) {
150
  AnalysisConfig config;
F
fuchang01 已提交
151 152 153 154
  SetConfig(&config);

  if (use_mkldnn) {
    config.EnableMKLDNN();
155
    config.pass_builder()->AppendPass("fc_mkldnn_pass");
F
fuchang01 已提交
156 157
  }

158 159 160 161
  if (use_ngraph) {
    config.EnableNgraph();
  }

162
  std::vector<std::vector<PaddleTensor>> outputs;
F
fuchang01 已提交
163 164 165 166 167 168
  std::vector<std::vector<PaddleTensor>> inputs;
  LoadInputData(&inputs);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&config),
                 inputs, &outputs, FLAGS_num_threads);
}

169 170
TEST(Analyzer_bert, profile) { profile(); }
#ifdef PADDLE_WITH_MKLDNN
171 172 173 174 175
TEST(Analyzer_bert, profile_mkldnn) { profile(true, false); }
#endif

#ifdef PADDLE_WITH_NGRAPH
TEST(Analyzer_bert, profile_ngraph) { profile(false, true); }
176 177 178 179 180 181 182 183 184 185 186 187 188 189
#endif

// Check the fuse status
TEST(Analyzer_bert, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
  LOG(INFO) << "num_ops: " << num_ops;
}

// Compare result of NativeConfig and AnalysisConfig
190
void compare(bool use_mkldnn = false, bool use_ngraph = false) {
191 192 193 194
  AnalysisConfig cfg;
  SetConfig(&cfg);
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
195
    cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
196
  }
F
fuchang01 已提交
197

198 199 200 201
  if (use_ngraph) {
    cfg.EnableNgraph();
  }

F
fuchang01 已提交
202 203 204
  std::vector<std::vector<PaddleTensor>> inputs;
  LoadInputData(&inputs);
  CompareNativeAndAnalysis(
205
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), inputs);
F
fuchang01 已提交
206 207
}

208
TEST(Analyzer_bert, compare) { compare(); }
F
fuchang01 已提交
209
#ifdef PADDLE_WITH_MKLDNN
210 211 212 213 214 215 216 217 218
TEST(Analyzer_bert, compare_mkldnn) {
  compare(true, false /* use_mkldnn, no use_ngraph */);
}
#endif

#ifdef PADDLE_WITH_NGRAPH
TEST(Analyzer_bert, compare_ngraph) {
  compare(false, true /* no use_mkldnn, use_ngraph */);
}
F
fuchang01 已提交
219
#endif
220 221

// Compare Deterministic result
222 223 224 225 226 227 228 229 230
TEST(Analyzer_bert, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> inputs;
  LoadInputData(&inputs);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       inputs);
}
F
fuchang01 已提交
231 232
}  // namespace inference
}  // namespace paddle