test_conv2d_op.py 47.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
D
dzhwinter 已提交
19

20
import paddle.fluid.core as core
L
liym27 已提交
21
import paddle.fluid as fluid
22 23
from op_test import OpTest
from paddle.fluid import Program, program_guard
24 25


L
liym27 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
def conv2d_forward_naive(input,
                         filter,
                         group,
                         conv_param,
                         padding_algorithm='EXPLICIT',
                         data_format='NCHW'):
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Unknown Attr(data_format): '%s' ."
                         "It can only be 'NCHW' or 'NHWC'." % str(data_format))

    channel_last = (data_format == "NHWC")
    if channel_last:
        input = np.transpose(input, [0, 3, 1, 2])

C
chengduoZH 已提交
45
    in_n, in_c, in_h, in_w = input.shape
L
liym27 已提交
46 47 48
    f_n, f_c, f_h, f_w = filter.shape
    out_n = in_n
    out_c = f_n
C
chengduoZH 已提交
49 50
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
51
    sub_out_c = out_c // group
L
liym27 已提交
52
    sub_f_n = f_n // group
C
chengduoZH 已提交
53

C
chengduoZH 已提交
54 55
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilation']
L
liym27 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

    # update pad and dilation
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter.shape[2:4]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0]
    elif padding_algorithm == "SAME":
        dilation = [1, 1]
76
        input_data_shape = input.shape[2:4]
L
liym27 已提交
77 78 79 80 81 82 83 84 85 86 87 88
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_h_0, pad_h_1 = pad[0], pad[0]
    pad_w_0, pad_w_1 = pad[1], pad[1]
    if len(pad) == 4:
        pad_h_0, pad_h_1 = pad[0], pad[1]
        pad_w_0, pad_w_1 = pad[2], pad[3]
    out_h = 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[0] *
                                             (f_h - 1) + 1)) // stride[0]
    out_w = 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[1] *
                                             (f_w - 1) + 1)) // stride[1]
    out = np.zeros((out_n, out_c, out_h, out_w))
C
chengduoZH 已提交
89

武毅 已提交
90 91
    d_bolck_h = (dilation[0] * (f_h - 1) + 1)
    d_bolck_w = (dilation[1] * (f_w - 1) + 1)
C
chengduoZH 已提交
92

L
liym27 已提交
93 94
    input_pad = np.pad(input, ((0, 0), (0, 0), (pad_h_0, pad_h_1),
                               (pad_w_0, pad_w_1)),
C
chengduoZH 已提交
95 96
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
97

L
liym27 已提交
98
    filter_dilation = np.zeros((f_n, f_c, d_bolck_h, d_bolck_w))
C
chengduoZH 已提交
99 100 101
    filter_dilation[:, :, 0:d_bolck_h:dilation[0], 0:d_bolck_w:dilation[
        1]] = filter

C
chengduoZH 已提交
102 103 104
    for i in range(out_h):
        for j in range(out_w):
            for g in range(group):
C
chengduoZH 已提交
105 106
                input_pad_masked = \
                    input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
107 108
                    i * stride[0]:i * stride[0] + d_bolck_h,
                    j * stride[1]:j * stride[1] + d_bolck_w]
C
chengduoZH 已提交
109

L
liym27 已提交
110 111
                f_sub = filter_dilation[g * sub_f_n:(g + 1) * sub_f_n, :, :, :]
                # sub_f_n == sub_out_c
C
chengduoZH 已提交
112
                for k in range(sub_out_c):
L
liym27 已提交
113
                    # Multiplication of Corresponding Elements, then sum all
C
chengduoZH 已提交
114 115 116
                    out[:, g * sub_out_c + k, i, j] = \
                        np.sum(input_pad_masked * f_sub[k, :, :, :],
                               axis=(1, 2, 3))
C
chengduoZH 已提交
117

L
liym27 已提交
118 119 120
    if channel_last:
        out = np.transpose(out, [0, 2, 3, 1])

121
    return out, in_n, out_h, out_w, out_c
C
chengduoZH 已提交
122 123


L
liym27 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase


def create_test_cudnn_fp16_class(parent, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConv2DCUDNNFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
154
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
L
liym27 已提交
155 156 157 158 159

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
160
                    place, ['Filter'], 'Output', no_grad_set=set(['Input']))
L
liym27 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16")
    TestConv2DCUDNNFp16.__name__ = cls_name
    globals()[cls_name] = TestConv2DCUDNNFp16


def create_test_channel_last_class(parent):
    class TestChannelLastCase(parent):
        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
    TestChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestChannelLastCase


def create_test_cudnn_channel_last_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCudnnChannelLastCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast")
    TestCudnnChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastCase


200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
def create_test_cudnn_channel_last_fp16_class(parent, grad_check=True):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCudnnChannelLastFp16(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16

        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=2e-2)

        def test_check_grad_no_filter(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
218
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
219 220 221 222 223

        def test_check_grad_no_input(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place) and grad_check:
                self.check_grad_with_place(
224
                    place, ['Filter'], 'Output', no_grad_set=set(['Input']))
225 226 227 228 229 230 231 232 233 234 235 236 237

        def init_data_format(self):
            self.data_format = "NHWC"

        def init_test_case_2(self):
            N, C, H, W = self.input_size
            self.input_size = [N, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLastFp16")
    TestCudnnChannelLastFp16.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastFp16


L
liym27 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.pad = [0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.pad = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


C
cnn 已提交
292
class TestConv2DOp(OpTest):
293
    def setUp(self):
K
Kexin Zhao 已提交
294
        self.op_type = "conv2d"
295
        self.use_cudnn = False
296
        self.exhaustive_search = False
297
        self.use_cuda = False
298
        self.use_mkldnn = False
299
        self.fuse_relu_before_depthwise_conv = False
300
        self.data_format = "AnyLayout"
301
        self.dtype = np.float64
K
Kexin Zhao 已提交
302
        self.init_kernel_type()
C
chengduoZH 已提交
303
        self.init_group()
C
chengduoZH 已提交
304
        self.init_dilation()
C
chengduoZH 已提交
305
        self.init_test_case()
C
chengduoZH 已提交
306

C
chengduoZH 已提交
307 308 309 310 311
        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }
312

K
Kexin Zhao 已提交
313
        input = np.random.random(self.input_size).astype(self.dtype)
G
guomingz 已提交
314
        if not self.has_cuda():
315 316 317 318 319 320 321 322
            self.fuse_relu_before_depthwise_conv = False
        if self.fuse_relu_before_depthwise_conv:
            input = input - 0.5
            input -= (input < 0) * 0.1
            input += (input >= 0) * 0.1
            input2 = np.maximum(input, 0.0)
        else:
            input2 = input
G
guomingz 已提交
323
        filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
L
liym27 已提交
324

325
        output, _, _, _, _ = conv2d_forward_naive(input2, filter, self.groups,
326 327
                                                  conv2d_param)
        output = output.astype(self.dtype)
K
Kexin Zhao 已提交
328 329

        self.inputs = {
K
Kexin Zhao 已提交
330 331
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
K
Kexin Zhao 已提交
332
        }
H
hedaoyuan 已提交
333
        self.attrs = {
C
chengduoZH 已提交
334 335
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
336
            'groups': self.groups,
337
            'dilations': self.dilations,
338
            'use_cudnn': self.use_cudnn,
339
            'use_mkldnn': self.use_mkldnn,
340
            'data_format': self.data_format,
341 342
            'fuse_relu_before_depthwise_conv':
            self.fuse_relu_before_depthwise_conv,
343
            'exhaustive_search': self.exhaustive_search
H
hedaoyuan 已提交
344
        }
345 346
        self.outputs = {'Output': output}

G
guomingz 已提交
347
    def has_cuda(self):
348 349
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)
350

H
hedaoyuan 已提交
351
    def test_check_output(self):
G
guomingz 已提交
352
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
353 354 355
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
H
hedaoyuan 已提交
356

H
hedaoyuan 已提交
357
    def test_check_grad(self):
358 359
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
360
            return
G
guomingz 已提交
361
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
362
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
363
        self.check_grad_with_place(
364 365 366 367
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.02,
            check_dygraph=(self.use_mkldnn == False))
H
hedaoyuan 已提交
368

369
    def test_check_grad_no_filter(self):
370 371
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
372
            return
G
guomingz 已提交
373
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
374
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
375 376 377 378
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
379 380
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
381 382

    def test_check_grad_no_input(self):
383 384
        if self.dtype == np.float16 or (hasattr(self, "no_need_check_grad") and
                                        self.no_need_check_grad == True):
K
Kexin Zhao 已提交
385
            return
G
guomingz 已提交
386
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
387
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
388 389 390
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
391 392
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
393

C
chengduoZH 已提交
394 395 396 397 398
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
399
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
400 401
        self.filter_size = [6, f_c, 3, 3]

L
liym27 已提交
402 403 404
    def init_test_case_2(self):
        pass

C
chengduoZH 已提交
405 406 407
    def init_dilation(self):
        self.dilations = [1, 1]

C
chengduoZH 已提交
408
    def init_group(self):
H
hedaoyuan 已提交
409 410
        self.groups = 1

K
Kexin Zhao 已提交
411 412
    def init_kernel_type(self):
        pass
武毅 已提交
413

H
hedaoyuan 已提交
414

C
cnn 已提交
415
class TestWithPad(TestConv2DOp):
C
chengduoZH 已提交
416 417 418 419 420
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
421
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
422 423 424
        self.filter_size = [6, f_c, 3, 3]


C
cnn 已提交
425
class TestWithStride(TestConv2DOp):
C
chengduoZH 已提交
426 427 428 429 430
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
431
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
432 433 434
        self.filter_size = [6, f_c, 3, 3]


C
cnn 已提交
435
class TestWithGroup(TestConv2DOp):
Z
zhupengyang 已提交
436 437 438 439 440 441 442 443
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [18, f_c, 3, 3]
H
hedaoyuan 已提交
444

武毅 已提交
445

C
cnn 已提交
446
class TestWith1x1(TestConv2DOp):
C
chengduoZH 已提交
447 448 449 450 451
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
452
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
453
        self.filter_size = [120, f_c, 1, 1]
C
chengduoZH 已提交
454 455 456 457 458

    def init_group(self):
        self.groups = 3


C
cnn 已提交
459
class TestWithDepthWise3x3(TestConv2DOp):
460 461 462 463 464 465
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
466
        self.filter_size = [12, f_c, 3, 3]
467 468 469 470 471 472 473 474

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4


C
cnn 已提交
475
class TestWithDepthWise5x5(TestConv2DOp):
476 477 478 479 480 481 482 483 484 485 486 487
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4


C
cnn 已提交
488
class TestWithDepthWise7x7(TestConv2DOp):
489 490 491 492 493 494 495 496 497 498 499 500
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8


C
cnn 已提交
501
class TestWithDilation(TestConv2DOp):
C
chengduoZH 已提交
502 503 504 505 506
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
507
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
508
        self.filter_size = [12, f_c, 3, 3]
C
chengduoZH 已提交
509

C
chengduoZH 已提交
510 511
    def init_dilation(self):
        self.dilations = [2, 2]
C
chengduoZH 已提交
512

C
chengduoZH 已提交
513
    def init_group(self):
C
chengduoZH 已提交
514
        self.groups = 3
武毅 已提交
515

C
chengduoZH 已提交
516

C
cnn 已提交
517
class TestWithInput1x1Filter1x1(TestConv2DOp):
518 519 520
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
Z
zhupengyang 已提交
521
        self.input_size = [100, 3, 1, 1]  # NCHW
522
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
523
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
524
        self.filter_size = [120, f_c, 1, 1]
525 526 527 528 529

    def init_group(self):
        self.groups = 3


C
cnn 已提交
530
#----------------Conv2DCUDNN----------------
C
chengduoZH 已提交
531

C
cnn 已提交
532
create_test_cudnn_class(TestConv2DOp)
C
chengduo 已提交
533 534 535 536 537
create_test_cudnn_class(TestWithPad)
create_test_cudnn_class(TestWithStride)
create_test_cudnn_class(TestWithGroup)
create_test_cudnn_class(TestWith1x1)
create_test_cudnn_class(TestWithInput1x1Filter1x1)
K
Kexin Zhao 已提交
538

C
cnn 已提交
539
#----------------Conv2DCUDNN fp16----------------
C
chengduo 已提交
540

C
cnn 已提交
541
create_test_cudnn_fp16_class(TestConv2DOp, grad_check=False)
C
chengduo 已提交
542 543 544 545 546
create_test_cudnn_fp16_class(TestWithPad, grad_check=False)
create_test_cudnn_fp16_class(TestWithStride, grad_check=False)
create_test_cudnn_fp16_class(TestWithGroup, grad_check=False)
create_test_cudnn_fp16_class(TestWith1x1, grad_check=False)
create_test_cudnn_fp16_class(TestWithInput1x1Filter1x1, grad_check=False)
C
chengduo 已提交
547

L
liym27 已提交
548
#----------------TestDepthwiseConv -----
K
Kexin Zhao 已提交
549 550


C
cnn 已提交
551
class TestDepthwiseConv(TestConv2DOp):
552
    def init_test_case(self):
553
        self.use_cuda = True
554 555 556 557 558
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
559
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
560
        self.filter_size = [12, f_c, 3, 3]
561
        self.op_type = "depthwise_conv2d"
562 563


C
cnn 已提交
564
class TestDepthwiseConv2(TestConv2DOp):
565
    def init_test_case(self):
566 567 568 569 570 571 572
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
573
        self.filter_size = [12, f_c, 3, 3]
574 575 576
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
577
class TestDepthwiseConv3(TestConv2DOp):
578 579
    def init_test_case(self):
        self.use_cuda = True
580 581 582 583 584
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
585
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
586
        self.filter_size = [24, f_c, 3, 3]
587
        self.op_type = "depthwise_conv2d"
588 589


C
cnn 已提交
590
class TestDepthwiseConvWithDilation(TestConv2DOp):
591 592 593 594 595 596 597 598 599
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
600
        self.filter_size = [24, f_c, 3, 3]
601 602 603
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
604
class TestDepthwiseConvWithDilation2(TestConv2DOp):
605 606 607 608 609 610 611 612 613
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
614
        self.filter_size = [24, f_c, 3, 3]
615 616 617
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
618
class TestDepthwiseConvandFuse(TestConv2DOp):
619 620 621 622 623 624 625 626 627
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
628
        self.filter_size = [12, f_c, 3, 3]
629 630 631
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
632
class TestDepthwiseConv2andFuse(TestConv2DOp):
633 634 635 636 637 638 639 640 641
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
642
        self.filter_size = [12, f_c, 3, 3]
643 644 645
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
646
class TestDepthwiseConv3andFuse(TestConv2DOp):
647 648 649 650 651 652 653 654 655
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
656
        self.filter_size = [24, f_c, 3, 3]
657 658 659
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
660
class TestDepthwiseConvWithDilationandFuse(TestConv2DOp):
661 662 663 664 665 666 667 668 669 670
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
671
        self.filter_size = [24, f_c, 3, 3]
672 673 674
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
675
class TestDepthwiseConvWithDilation2andFuse(TestConv2DOp):
676 677 678 679 680 681 682 683 684 685
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
686
        self.filter_size = [24, f_c, 3, 3]
687 688 689
        self.op_type = "depthwise_conv2d"


C
cnn 已提交
690
class TestCUDNNExhaustiveSearch(TestConv2DOp):
691 692 693 694 695
    def init_kernel_type(self):
        self.use_cudnn = True
        self.exhaustive_search = True


C
cnn 已提交
696
class TestConv2DOpError(unittest.TestCase):
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of conv2d must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                fluid.layers.conv2d(x1, 1, 1)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of conv2d must be float16 or float32 or float64
                # float16 only can be set on GPU place
                x2 = fluid.layers.data(
                    name='x2', shape=[3, 4, 5, 6], dtype="int32")
                fluid.layers.conv2d(x2, 1, 1)

            self.assertRaises(TypeError, test_dtype)


718 719
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
720
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
721 722 723
#     def init_op_type(self):
#         self.op_type = "conv_cudnn"

L
liym27 已提交
724 725 726
# ---- test asymmetric padding ----


C
cnn 已提交
727
class TestConv2DOp_v2(OpTest):
L
liym27 已提交
728 729 730 731 732 733 734
    def setUp(self):
        self.op_type = "conv2d"
        self.use_cudnn = False
        self.exhaustive_search = False
        self.use_cuda = False
        self.use_mkldnn = False
        self.fuse_relu_before_depthwise_conv = False
735
        self.dtype = np.float64
L
liym27 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
        self.init_kernel_type()
        self.init_group()
        self.init_dilation()
        self.init_data_format()
        self.init_test_case()
        self.init_paddings()
        self.init_test_case_2()

        conv2d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilation': self.dilations
        }

        input = np.random.random(self.input_size).astype(self.dtype)
        if not self.has_cuda():
            self.fuse_relu_before_depthwise_conv = False
        if self.fuse_relu_before_depthwise_conv:
            input = input - 0.5
            input -= (input < 0) * 0.1
            input += (input >= 0) * 0.1
            input2 = np.maximum(input, 0.0)
        else:
            input2 = input
        filter = np.random.uniform(-1, 1, self.filter_size).astype(self.dtype)
        output, _, _, _, _ = conv2d_forward_naive(
            input2, filter, self.groups, conv2d_param, self.padding_algorithm,
            self.data_format)
        output = output.astype(self.dtype)

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'padding_algorithm': self.padding_algorithm,
            'groups': self.groups,
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format,
            'fuse_relu_before_depthwise_conv':
            self.fuse_relu_before_depthwise_conv,
            'exhaustive_search': self.exhaustive_search
        }
        self.outputs = {'Output': output}

    def has_cuda(self):
        return core.is_compiled_with_cuda() and (self.use_cudnn or
                                                 self.use_cuda)

    def test_check_output(self):
790
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
791
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
792 793
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
794 795

    def test_check_grad(self):
796
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
797 798 799 800
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
801 802 803 804
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.02,
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
805 806

    def test_check_grad_no_filter(self):
807
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
808 809 810 811 812 813 814
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.02,
815 816
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
817 818

    def test_check_grad_no_input(self):
819
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
L
liym27 已提交
820 821 822 823 824 825
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cuda() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Filter'],
            'Output',
826 827
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
L
liym27 已提交
828 829 830

    def init_test_case(self):
        self.pad = [0, 0]
831
        self.stride = [1, 2]
L
liym27 已提交
832 833 834
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
835
        self.filter_size = [6, f_c, 4, 3]
L
liym27 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856

    def init_dilation(self):
        self.dilations = [1, 1]

    def init_group(self):
        self.groups = 1

    def init_kernel_type(self):
        pass

    def init_paddings(self):
        self.pad = [0, 0]
        self.padding_algorithm = "EXPLICIT"

    def init_data_format(self):
        self.data_format = "NCHW"

    def init_test_case_2(self):
        pass


C
cnn 已提交
857
class TestConv2DOp_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
858 859 860 861 862
    def init_paddings(self):
        self.pad = [0, 0, 1, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
863
class TestWithPad_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
864 865 866 867 868 869 870 871 872 873 874 875
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
876
class TestWithStride_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
877 878 879 880 881 882 883 884 885 886 887 888
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 3, 6, 6]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3]

    def init_paddings(self):
        self.pad = [2, 1, 3, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
889
class TestWithGroup_AsyPadding(TestConv2DOp_v2):
Z
zhupengyang 已提交
890 891 892 893 894 895 896 897
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.group = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [24, f_c, 4, 3]
L
liym27 已提交
898 899


C
cnn 已提交
900
class TestWith1x1_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
901 902 903 904 905
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
906
        self.filter_size = [120, f_c, 1, 1]
L
liym27 已提交
907 908 909 910 911 912 913 914 915

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [2, 2, 4, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
916
class TestWithDepthWise3x3_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
917 918 919 920 921
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [3, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
922
        self.filter_size = [16, f_c, 3, 3]
L
liym27 已提交
923 924 925 926 927 928 929 930 931 932 933 934

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [1, 3, 2, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
935
class TestWithDepthWise5x5_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 4, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [8, f_c, 5, 5]

    def init_group(self):
        self.groups = 4

    def init_paddings(self):
        self.pad = [0, 1, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
951
class TestWithDepthWise7x7_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
    def init_test_case(self):
        self.stride = [2, 2]
        self.input_size = [2, 8, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [16, f_c, 7, 7]

    def init_group(self):
        self.groups = 8

    def init_paddings(self):
        self.pad = [1, 3, 4, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
967
class TestWithDilation_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
968 969 970 971 972
    def init_test_case(self):
        self.stride = [1, 1]
        self.input_size = [2, 3, 10, 10]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
973
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
974 975 976 977 978 979 980 981 982 983 984 985

    def init_dilation(self):
        self.dilations = [2, 2]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 1, 3, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
986
class TestWithInput1x1Filter1x1_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
987 988
    def init_test_case(self):
        self.stride = [1, 1]
Z
zhupengyang 已提交
989
        self.input_size = [40, 3, 1, 1]  # NCHW
L
liym27 已提交
990 991
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
992
        self.filter_size = [120, f_c, 1, 1]
L
liym27 已提交
993 994 995 996 997 998 999 1000 1001

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 3, 4, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1002
create_test_cudnn_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1003 1004 1005 1006 1007 1008 1009
create_test_cudnn_class(TestWithPad_AsyPadding)
create_test_cudnn_class(TestWithStride_AsyPadding)
create_test_cudnn_class(TestWithGroup_AsyPadding)
create_test_cudnn_class(TestWith1x1_AsyPadding)
create_test_cudnn_class(TestWithInput1x1Filter1x1_AsyPadding)


C
cnn 已提交
1010
class TestDepthwiseConv_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1011 1012 1013 1014 1015 1016 1017
    def init_test_case(self):
        self.use_cuda = True
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1018
        self.filter_size = [12, f_c, 3, 3]
L
liym27 已提交
1019 1020 1021 1022 1023 1024 1025
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 1, 0, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1026
class TestDepthwiseConv2_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1027 1028 1029 1030 1031 1032 1033
    def init_test_case(self):
        self.use_cuda = True
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1034
        self.filter_size = [12, f_c, 3, 3]
L
liym27 已提交
1035 1036 1037 1038 1039 1040 1041
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [0, 1, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1042
class TestDepthwiseConv3_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1043 1044 1045 1046 1047 1048 1049
    def init_test_case(self):
        self.use_cuda = True
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1050
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1051 1052 1053 1054 1055 1056 1057
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 1, 0, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1058
class TestDepthwiseConvWithDilation_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1068
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1069 1070 1071 1072 1073 1074 1075
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 1, 2, 1]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1076
class TestDepthwiseConvWithDilation2_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085
    def init_test_case(self):
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1086
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1087 1088 1089 1090 1091 1092 1093
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [0, 1, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1094
class TestDepthwiseConvandFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1104
        self.filter_size = [12, f_c, 3, 3]
L
liym27 已提交
1105 1106 1107 1108 1109 1110 1111
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [2, 1, 2, 3]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1112
class TestDepthwiseConv2andFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1122
        self.filter_size = [12, f_c, 3, 3]
L
liym27 已提交
1123 1124 1125 1126 1127 1128 1129
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 1, 1, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1130
class TestDepthwiseConv3andFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1140
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1141 1142 1143 1144 1145 1146 1147
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 2, 0, 2]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1148
class TestDepthwiseConvWithDilationandFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1159
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1160 1161 1162 1163 1164 1165 1166
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [2, 1, 1, 0]
        self.padding_algorithm = "EXPLICIT"


C
cnn 已提交
1167
class TestDepthwiseConvWithDilation2andFuse_AsyPadding(TestConv2DOp_v2):
L
liym27 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
    def init_test_case(self):
        self.fuse_relu_before_depthwise_conv = True
        self.use_cuda = True
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        self.groups = 3
        self.dilations = [2, 2]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
Z
zhupengyang 已提交
1178
        self.filter_size = [24, f_c, 3, 3]
L
liym27 已提交
1179 1180 1181 1182 1183 1184 1185 1186
        self.op_type = "depthwise_conv2d"

    def init_paddings(self):
        self.pad = [1, 3, 1, 3]
        self.padding_algorithm = "EXPLICIT"


#---------- test SAME VALID -----------
C
cnn 已提交
1187
create_test_padding_SAME_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1188 1189 1190 1191 1192
create_test_padding_SAME_class(TestWithPad_AsyPadding)
create_test_padding_SAME_class(TestWithStride_AsyPadding)
create_test_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
1193
create_test_padding_VALID_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1194 1195 1196 1197 1198
create_test_padding_VALID_class(TestWithPad_AsyPadding)
create_test_padding_VALID_class(TestWithStride_AsyPadding)
create_test_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
1199
create_test_cudnn_padding_SAME_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1200 1201 1202 1203 1204
create_test_cudnn_padding_SAME_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithInput1x1Filter1x1_AsyPadding)

C
cnn 已提交
1205
create_test_cudnn_padding_VALID_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
create_test_cudnn_padding_VALID_class(TestWithPad_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithStride_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithGroup_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithInput1x1Filter1x1_AsyPadding)

# depthwise conv2d

create_test_padding_SAME_class(TestDepthwiseConv_AsyPadding)
create_test_padding_SAME_class(TestDepthwiseConvWithDilation_AsyPadding)
create_test_padding_SAME_class(TestDepthwiseConvandFuse_AsyPadding)
create_test_padding_SAME_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)

create_test_padding_VALID_class(TestDepthwiseConv_AsyPadding)
create_test_padding_VALID_class(TestDepthwiseConvWithDilation_AsyPadding)
create_test_padding_VALID_class(TestDepthwiseConvandFuse_AsyPadding)
create_test_padding_VALID_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)

# ------------ test channel last ---------
C
cnn 已提交
1224
create_test_channel_last_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
create_test_channel_last_class(TestWithPad_AsyPadding)
create_test_channel_last_class(TestWithGroup_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)
create_test_channel_last_class(TestWithInput1x1Filter1x1_AsyPadding)

create_test_channel_last_class(TestDepthwiseConv_AsyPadding)
create_test_channel_last_class(TestDepthwiseConvWithDilation2_AsyPadding)
create_test_channel_last_class(TestDepthwiseConvandFuse_AsyPadding)
create_test_channel_last_class(TestDepthwiseConvWithDilationandFuse_AsyPadding)

C
cnn 已提交
1235
create_test_cudnn_channel_last_class(TestConv2DOp_AsyPadding)
L
liym27 已提交
1236 1237 1238 1239 1240
create_test_cudnn_channel_last_class(TestWithPad_AsyPadding)
create_test_cudnn_channel_last_class(TestWithStride_AsyPadding)
create_test_cudnn_channel_last_class(TestWithGroup_AsyPadding)
create_test_cudnn_channel_last_class(TestWithDilation_AsyPadding)

1241
create_test_cudnn_channel_last_fp16_class(
C
cnn 已提交
1242
    TestConv2DOp_AsyPadding, grad_check=False)
1243 1244 1245 1246 1247 1248 1249 1250 1251
create_test_cudnn_channel_last_fp16_class(
    TestWithPad_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithStride_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithGroup_AsyPadding, grad_check=False)
create_test_cudnn_channel_last_fp16_class(
    TestWithDilation_AsyPadding, grad_check=False)

L
liym27 已提交
1252 1253

# --------- test python API ---------------
C
cnn 已提交
1254
class TestConv2DAPI(unittest.TestCase):
L
liym27 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    def test_api(self):

        input_NHWC = fluid.layers.data(
            name="input_NHWC",
            shape=[2, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCHW = fluid.layers.data(
            name="input_NCHW",
            shape=[2, 3, 5, 5],
            append_batch_size=False,
            dtype="float32")

        fluid.layers.conv2d(
            input=input_NHWC,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding=0,
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")

        fluid.layers.conv2d(
            input=input_NCHW,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding=[1, 2, 1, 0],
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")

        fluid.layers.conv2d(
            input=input_NCHW,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding=[[0, 0], [0, 0], [1, 1], [1, 1]],
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")

        fluid.layers.conv2d(
            input=input_NHWC,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
            dilation=[1, 1],
            groups=1,
            data_format="NHWC")

        fluid.layers.conv2d(
            input=input_NCHW,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding="SAME",
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")

        fluid.layers.conv2d(
            input=input_NCHW,
            num_filters=3,
            filter_size=[3, 3],
            stride=[1, 1],
            padding="VALID",
            dilation=[1, 1],
            groups=1,
            data_format="NCHW")


C
cnn 已提交
1330
class TestConv2DAPI_Error(unittest.TestCase):
L
liym27 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
    def test_api(self):
        input = fluid.layers.data(
            name="input",
            shape=[2, 5, 5, 5],
            append_batch_size=False,
            dtype="float32")

        # ValueError: cudnn
        def run_1():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=0,
                dilation=[1, 1],
                groups=1,
                use_cudnn=[0],
                data_format="NCHW")

        self.assertRaises(ValueError, run_1)

        # ValueError: data_format
        def run_2():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=0,
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NCHWC")

        self.assertRaises(ValueError, run_2)

        # ValueError: padding
        def run_3():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding="SAMEE",
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NCHW")

        self.assertRaises(ValueError, run_3)

        def run_4():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=[[0, 1], [0, 1], [0, 1], [0, 1]],
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NCHW")

        self.assertRaises(ValueError, run_4)

        def run_5():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=[[0, 1], [0, 1], [0, 1], [0, 1]],
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NHWC")

        self.assertRaises(ValueError, run_5)

        # ValueError: channel dimmention
        x = fluid.layers.data(
            name="x",
            shape=[2, 5, 5, -1],
            append_batch_size=False,
            dtype="float32")

        def run_6():
            fluid.layers.conv2d(
                input=x,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=0,
                dilation=[1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NHWC")

        self.assertRaises(ValueError, run_6)

        # ValueError: groups
        def run_7():
            fluid.layers.conv2d(
                input=input,
                num_filters=3,
                filter_size=[3, 3],
                stride=[1, 1],
                padding=0,
                dilation=[1, 1],
                groups=3,
                use_cudnn=False,
                data_format="NHWC")

        self.assertRaises(ValueError, run_7)


1448 1449
if __name__ == '__main__':
    unittest.main()