launch_utils.py 77.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import time
import os
import signal
import copy
import sys
import subprocess
22 23
import tempfile
import shutil
24
from contextlib import closing
X
xiongkun 已提交
25
import multiprocessing
26
import socket
27
import warnings
28
import six
W
WangXi 已提交
29
import struct
30
import json
31

32 33
import paddle
import paddle.fluid as fluid
J
Jiangxinz 已提交
34
from distutils.util import strtobool
X
xiongkun 已提交
35
import paddle.utils.cpp_extension.extension_utils as utils
36

37 38 39 40
logger = logging.getLogger("root")
logger.propagate = False


G
gongweibao 已提交
41
class DistributeMode():
42 43 44 45 46 47 48 49
    """
    There are various mode for fleetrun, each of them is designed for different model.
    """
    COLLECTIVE = 0
    PS = 1
    PS_HETER = 2


G
gongweibao 已提交
50
class DeviceMode():
51 52 53
    """
    Training devices type
    """
54
    UNKNOWN = -1
55 56 57
    CPU = 0
    GPU = 1
    KUNLUN = 2
58
    XPU = 2
59 60
    ASCEND_NPU = 3
    UNKNOWN = 3
Z
zn 已提交
61
    MLU = 4
62 63


64
class Cluster(object):
65

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    def __init__(self, hdfs):
        self.job_server = None
        self.pods = []
        self.hdfs = None
        self.job_stage_flag = None

    def __str__(self):
        return "job_server:{} pods:{} job_stage_flag:{} hdfs:{}".format(
            self.job_server, [str(pod) for pod in self.pods],
            self.job_stage_flag, self.hdfs)

    def __eq__(self, cluster):
        if len(self.pods) != len(cluster.pods):
            return False

        for a, b in zip(self.pods, cluster.pods):
            if a != b:
                return False

        if self.job_stage_flag != cluster.job_stage_flag:
            return False

        return True

    def __ne__(self, cluster):
        return not self.__eq__(cluster)

Z
zhangchunle 已提交
93
    def update_pods(self, cluster):
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        self.pods = copy.copy(cluster.pods)

    def trainers_nranks(self):
        return len(self.trainers_endpoints())

    def pods_nranks(self):
        return len(self.pods)

    def trainers_endpoints(self):
        r = []
        for pod in self.pods:
            for t in pod.trainers:
                r.append(t.endpoint)
        return r

109 110 111 112 113 114 115 116
    def world_device_ids(self):
        r = []
        for pod in self.pods:
            for t in pod.trainers:
                str_accelerators = [str(acc) for acc in t.accelerators]
                r.append(str_accelerators)
        return r

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    def pods_endpoints(self):
        r = []
        for pod in self.pods:
            ep = "{}:{}".format(pod.addr, pod.port)
            assert pod.port != None and pod.addr != None, "{} not a valid endpoint".format(
                ep)
            r.append(ep)
        return r

    def get_pod_by_id(self, pod_id):
        for pod in self.pods:
            if str(pod_id) == str(pod.id):
                return pod

        return None


class JobServer(object):
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149
    def __init__(self):
        self.endpoint = None

    def __str__(self):
        return "{}".format(self.endpoint)

    def __eq__(self, j):
        return self.endpint == j.endpoint

    def __ne__(self, j):
        return not self == j


class Trainer(object):
150

151
    def __init__(self):
152
        self.accelerators = []
153 154
        self.endpoint = None
        self.rank = None
155
        self.stage = None
156 157

    def __str__(self):
158 159
        return "accelerator:{} endpoint:{} rank:{}".format(
            self.accelerators, self.endpoint, self.rank)
160 161

    def __eq__(self, t):
162
        if len(self.accelerators) != len(t.accelerators):
163 164 165 166 167 168
            return False

        if self.endpoint != t.endpoint or \
                self.rank != t.rank:
            return False

169
        for a, b in zip(self.accelerators, t.accelerators):
170 171 172 173 174 175 176 177 178 179 180 181 182
            if a != b:
                return False

        return True

    def __ne__(self, t):
        return not self == t

    def rank(self):
        return self.rank


class Pod(object):
183

184 185 186 187 188 189
    def __init__(self):
        self.rank = None
        self.id = None
        self.addr = None
        self.port = None
        self.trainers = []
190 191
        self.servers = []
        self.workers = []
192
        self.coordinators = []
193
        self.heter_workers = []
194 195
        self.accelerators = []
        self.device_mode = None
196 197

    def __str__(self):
198
        return "rank:{} id:{} addr:{} port:{} visible_accelerator:{} trainers:{} servers:{} \
199
            workers:{} heter_workers:{} coordinators:{}".format(
200 201 202
            self.rank, self.id, self.addr, self.port, self.accelerators,
            [str(t) for t in self.trainers], [str(s) for s in self.servers],
            [str(w)
203 204
             for w in self.workers], [str(h) for h in self.heter_workers],
            [str(c) for c in self.coordinators])
205 206 207 208 209 210

    def __eq__(self, pod):
        if self.rank != pod.rank or \
                self.id != pod.id or \
                self.addr != pod.addr or \
                self.port != pod.port:
Z
zhangchunle 已提交
211
            logger.debug("pod {} != {}".format(self, pod))
212 213 214 215 216 217 218 219 220 221 222 223 224
            return False

        if len(self.trainers) != len(pod.trainers):
            logger.debug("trainers {} != {}".format(self.trainers,
                                                    pod.trainers))
            return False

        for i in range(len(self.trainers)):
            if self.trainers[i] != pod.trainers[i]:
                logger.debug("trainer {} != {}".format(self.trainers[i],
                                                       pod.trainers[i]))
                return False

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        if len(self.servers) != len(pod.servers):
            logger.debug("servers {} != {}".format(self.servers, pod.servers))
            return False

        for i in range(len(self.servers)):
            if self.servers[i] != pod.servers[i]:
                logger.debug("servers {} != {}".format(self.servers[i],
                                                       pod.servers[i]))
                return False

        if len(self.workers) != len(pod.workers):
            logger.debug("workers {} != {}".format(self.workers, pod.workers))
            return False

        for i in range(len(self.workers)):
            if self.workers[i] != pod.workers[i]:
                logger.debug("workers {} != {}".format(self.workers[i],
                                                       pod.workers[i]))
                return False

245 246 247 248 249 250 251 252 253 254 255
        return True

    def __ne__(self, pod):
        return not self == pod

    def parse_response(self, res_pods):
        pass

    def rank(self):
        return self.rank

256
    def get_visible_accelerators(self):
257
        r = ""
258
        for g in self.accelerators:
259 260
            r += "{},".format(g)

261
        assert r != "", "this pod {} can't see any accelerators".format(self)
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

        r = r[:-1]
        return r


def get_logger(log_level=20, name="root"):
    logger = logging.getLogger(name)
    logger.setLevel(log_level)

    log_handler = logging.StreamHandler()
    log_format = logging.Formatter(
        '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s')
    log_handler.setFormatter(log_format)
    logger.addHandler(log_handler)

    return logger


280 281
def get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                devices_per_proc):
282
    assert type(trainer_endpoints) is list, "trainer_endpoints must be list"
283 284 285 286 287 288
    cluster = Cluster(hdfs=None)
    trainer_rank = 0
    for node_rank, ip in enumerate(node_ips):
        pod = Pod()
        pod.rank = node_rank
        pod.addr = ip
289 290
        pod.device_mode = device_mode

291
        cur_node_endpoints = trainer_endpoints[node_rank]
292
        # when use paddlecloud, endpoints may > devices_per_proc(user_defined)
293
        assert len(cur_node_endpoints) >= len(
294
            devices_per_proc
295
        ), "current trainer_endpoints size should be greater equal than acclerators size."
296
        for i in range(len(devices_per_proc)):
297
            trainer = Trainer()
Z
zn 已提交
298
            if device_mode == DeviceMode.GPU or device_mode == DeviceMode.ASCEND_NPU or device_mode == DeviceMode.MLU:
299
                if isinstance(devices_per_proc[i], (list, tuple)):
300 301
                    trainer.accelerators.extend(devices_per_proc[i])
                    pod.accelerators.extend(devices_per_proc[i])
302
                else:
303 304
                    trainer.accelerators.append(devices_per_proc[i])
                    pod.accelerators.append(devices_per_proc[i])
305 306
            elif device_mode == DeviceMode.XPU:
                if isinstance(devices_per_proc[i], (list, tuple)):
307
                    trainer.accelerators.extend(devices_per_proc[i])
308
                else:
309
                    trainer.accelerators.append(devices_per_proc[i])
310
            trainer.endpoint = "%s" % (cur_node_endpoints[i])
311 312 313 314 315 316 317 318 319 320 321
            trainer.rank = trainer_rank
            trainer_rank += 1

            pod.trainers.append(trainer)
        cluster.pods.append(pod)

    pod_rank = node_ips.index(node_ip)
    return cluster, cluster.pods[pod_rank]


def terminate_local_procs(procs):
K
kuizhiqing 已提交
322 323 324 325 326 327 328 329 330 331 332
    # try to terminate process by group, this happend in multiprocess senario in user process
    if os.name != 'nt':
        for p in procs:
            if p.proc.poll() is None:
                os.killpg(os.getpgid(p.proc.pid), signal.SIGTERM)
                if p.log_fn:
                    p.log_fn.close()
                logger.info("terminate process group gid:{}".format(p.proc.pid))

        time.sleep(1)

333 334 335
    for p in procs:
        if p.proc.poll() is None:
            p.proc.terminate()
336 337
            if p.log_fn:
                p.log_fn.close()
338 339
            logger.debug("terminate process id:{}".format(p.proc.pid))

340
    # wait all process terminiated
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    time.sleep(3)
    for step in range(0, 50):
        alive = False
        for p in procs:
            if p.proc.poll() is None:  # not termniate
                os.kill(p.proc.pid, signal.SIGKILL)
                alive = True

        if not alive:
            logger.info("terminate all the procs")
            return

        time.sleep(3)

    logger.fatal("can't kill all process and exit")
    exit(1)


def get_host_name_ip():
    try:
        host_name = socket.gethostname()
        host_ip = socket.gethostbyname(host_name)
        return host_name, host_ip
    except:
        return None


def add_arguments(argname, type, default, help, argparser, **kwargs):
    """Add argparse's argument.
    Usage:
    .. code-block:: python
        parser = argparse.ArgumentParser()
        add_argument("name", str, "Jonh", "User name.", parser)
        args = parser.parse_args()
    """
J
Jiangxinz 已提交
376
    type = strtobool if type == bool else type
377 378 379 380 381
    argparser.add_argument("--" + argname,
                           default=default,
                           type=type,
                           help=help + ' Default: %(default)s.',
                           **kwargs)
382 383 384


def find_free_ports(num):
385

386 387
    def __free_port():
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
W
WangXi 已提交
388 389 390 391
            # Note(wangxi): Close the connection with a TCP RST instead
            # of a TCP FIN, to avoid time_wait state.
            s.setsockopt(socket.SOL_SOCKET, socket.SO_LINGER,
                         struct.pack('ii', 1, 0))
392 393 394 395 396 397 398 399 400 401 402 403 404 405
            s.bind(('', 0))
            return s.getsockname()[1]

    port_set = set()
    step = 0
    while True:
        port = __free_port()
        if port not in port_set:
            port_set.add(port)

        if len(port_set) >= num:
            return port_set

        step += 1
W
WangXi 已提交
406
        if step > 400:
407 408 409 410 411 412 413 414
            print(
                "can't find avilable port and use the specified static port now!"
            )
            return None

    return None


415 416 417 418 419 420
def get_ports(num, offset):
    if os.environ.get('FLAGS_START_PORT') is None:
        ports = find_free_ports(num)
        if ports is not None:
            ports = list(ports)
    else:
421
        start_port = int(os.environ.get('FLAGS_START_PORT'))
422 423 424 425
        ports = range(start_port + offset, start_port + offset + num, 1)
    return ports


426 427 428 429 430 431 432 433
def pretty_print_envs(envs, header=None):
    spacing = 2
    max_k = 40
    max_v = 45

    for k, v in envs.items():
        max_k = max(max_k, len(k))

434 435
    h_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(
        max_k, " " * spacing, max_v)
436
    l_format = "    " + "|{{:>{}s}}{{}}{{:^{}s}}|\n".format(max_k, max_v)
437 438
    length = max_k + max_v + spacing

439 440
    border = "    +" + "".join(["="] * length) + "+"
    line = "    +" + "".join(["-"] * length) + "+"
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

    draws = ""
    draws += border + "\n"

    if header:
        draws += h_format.format(header[0], header[1])
    else:
        draws += h_format.format("fleetrun Distributed Envs", "Value")

    draws += line + "\n"

    for k, v in envs.items():
        if isinstance(v, str) and len(v) >= max_v:
            str_v = "... " + v[-41:]
        else:
            str_v = v

        draws += l_format.format(k, " " * spacing, str(str_v))

    draws += border

    _str = "\n{}\n".format(draws)
    return _str


466
class TrainerProc(object):
467

468 469 470 471 472 473 474 475 476
    def __init__(self):
        self.proc = None
        self.log_fn = None
        self.log_offset = None
        self.rank = None
        self.local_rank = None
        self.cmd = None


477 478 479 480 481 482 483 484 485 486 487 488
_run_with_coverage = False


def run_with_coverage(*args):
    global _run_with_coverage
    assert len(args) <= 1, "len(args) {} should <= 1".format(len(args))
    if len(args) == 1:
        assert isinstance(args[0], bool)
        _run_with_coverage = args[0]
    return _run_with_coverage


489 490 491 492
def start_local_trainers(cluster,
                         pod,
                         training_script,
                         training_script_args,
493 494 495 496 497 498 499 500
                         log_dir=None,
                         envs=None):

    if envs is None:
        current_env = copy.copy(os.environ.copy())
    else:
        current_env = copy.copy(envs)

501 502 503 504
    # paddle broadcast ncclUniqueId use socket, and
    # proxy maybe make trainers unreachable, so delete them.
    # if we set them to "", grpc will log error message "bad uri"
    # so just delete them.
505 506 507
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)

508 509
    ids = cluster.world_device_ids()
    res = [':'.join(ele) for ele in ids]
510 511 512
    procs = []
    for idx, t in enumerate(pod.trainers):
        proc_env = {
513 514 515 516 517 518 519 520 521 522
            "PADDLE_TRAINER_ID":
            "%d" % t.rank,
            "PADDLE_CURRENT_ENDPOINT":
            "%s" % t.endpoint,
            "PADDLE_TRAINERS_NUM":
            "%d" % cluster.trainers_nranks(),
            "PADDLE_TRAINER_ENDPOINTS":
            ",".join(cluster.trainers_endpoints()),
            "PADDLE_RANK_IN_NODE":
            str(idx),
523 524
            "PADDLE_LOCAL_DEVICE_IDS":
            ",".join([str(acc) for acc in t.accelerators]),
525 526
            "PADDLE_WORLD_DEVICE_IDS":
            ",".join(res),
527 528
        }

529 530 531 532 533 534 535 536 537 538 539
        # The following three environnement variables are used for auto mapping
        if current_env.get("PADDLE_CLUSTER_TOPO_PATH", None) is not None:
            proc_env["PADDLE_CLUSTER_TOPO_PATH"] = current_env[
                "PADDLE_CLUSTER_TOPO_PATH"]
        if current_env.get("PADDLE_RANK_MAPPING_PATH", None) is not None:
            proc_env["PADDLE_RANK_MAPPING_PATH"] = current_env[
                "PADDLE_RANK_MAPPING_PATH"]
        if current_env.get("PADDLE_ENABLE_AUTO_MAPPING", None) is not None:
            proc_env["PADDLE_ENABLE_AUTO_MAPPING"] = current_env[
                "PADDLE_ENABLE_AUTO_MAPPING"]

540
        if len(t.accelerators) > 0 and pod.device_mode == DeviceMode.GPU:
541
            proc_env["FLAGS_selected_gpus"] = "%s" % ",".join(
542 543
                [str(g) for g in t.accelerators])

544 545
        elif len(t.accelerators
                 ) > 0 and pod.device_mode == DeviceMode.ASCEND_NPU:
546 547
            proc_env["FLAGS_selected_npus"] = "%s" % ",".join(
                [str(g) for g in t.accelerators])
Z
zn 已提交
548 549 550
        elif len(t.accelerators) > 0 and pod.device_mode == DeviceMode.MLU:
            proc_env["FLAGS_selected_mlus"] = "%s" % ",".join(
                [str(g) for g in t.accelerators])
551

552 553 554 555 556
        if len(t.accelerators) > 0:
            proc_env["FLAGS_selected_accelerators"] = "%s" % ",".join(
                [str(g) for g in t.accelerators])
        # to do: same code style in future
        if fluid.core.is_compiled_with_xpu() and len(t.accelerators) > 0:
557
            proc_env["FLAGS_selected_xpus"] = "%s" % ",".join(
558
                [str(g) for g in t.accelerators])
559

560 561
        current_env.update(proc_env)

562
        coverage_args = []
563 564
        if run_with_coverage() or os.environ.get("WITH_COVERAGE",
                                                 "OFF") == "ON":
565 566 567
            coverage_args = ["-m", "coverage", "run", "--branch", "-p"]
        cmd = [sys.executable, "-u"] + coverage_args + [training_script
                                                        ] + training_script_args
568

569 570 571 572 573 574
        logger.debug("start trainer proc{}  env:{}".format(cmd, current_env))

        if idx == 0:
            logger.info("Local start {} processes. First process distributed "
                        "environment info (Only For Debug): {}".format(
                            len(pod.trainers),
575 576
                            pretty_print_envs(proc_env,
                                              ("Distributed Envs", "Value"))))
577
            logger.info(
578 579 580
                "details about PADDLE_TRAINER_ENDPOINTS can be found in "
                "{}/endpoints.log, and detail running logs maybe found in "
                "{}/workerlog.0".format(log_dir, log_dir))
581
        fn = None
K
kuizhiqing 已提交
582
        pre_fn = None if os.name == 'nt' else os.setsid
583 584
        if log_dir is not None:
            os.system("mkdir -p {}".format(log_dir))
585 586 587 588 589
            if os.path.exists("%s/endpoints.log" % log_dir):
                os.system("rm -f {}/endpoints.log".format(log_dir))
            with open("%s/endpoints.log" % log_dir, "w") as f:
                f.write("PADDLE_TRAINER_ENDPOINTS: \n")
                f.write("\n".join(cluster.trainers_endpoints()))
590 591 592 593 594
            if current_env.get("PADDLE_ENABLE_AUTO_MAPPING") is not None \
                and current_env.get("PADDLE_NEED_RANK_MAPPING").lower() == "true":
                fn = open("%s/prelaunchlog.%d" % (log_dir, idx), "a")
            else:
                fn = open("%s/workerlog.%d" % (log_dir, idx), "a")
595 596 597 598 599
            proc = subprocess.Popen(cmd,
                                    env=current_env,
                                    stdout=fn,
                                    stderr=fn,
                                    preexec_fn=pre_fn)
600
        else:
K
kuizhiqing 已提交
601
            proc = subprocess.Popen(cmd, env=current_env, preexec_fn=pre_fn)
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

        tp = TrainerProc()
        tp.proc = proc
        tp.rank = t.rank
        tp.local_rank = idx
        tp.log_fn = fn
        tp.log_offset = fn.tell() if fn else None
        tp.cmd = cmd

        procs.append(tp)

    return procs


def pull_worker_log(tp):
    if tp.log_fn:
        with open(tp.log_fn.name, 'r') as fin:
            fin.seek(tp.log_offset, 0)
            for line in fin:
                try:
                    sys.stdout.write(line)
                except UnicodeEncodeError:
                    sys.stdout.write(
                        'UnicodeEncodeError occurs at this line. '
                        'Please refer to the original log file "%s"\n' %
                        tp.log_fn.name)
            tp.log_offset = fin.tell()


def watch_local_trainers(procs, nranks):
    try:
        error = False
        error_rank = []
        # wait all process finish or one error
        alive = False
        for p in procs:
            if p.log_fn and p.local_rank == 0:
                pull_worker_log(p)

            ret = p.proc.poll()
            if ret is None:
                alive = True
            elif ret != 0:
                error = True
                error_rank.append(p.rank)

        if error:
            terminate_local_procs(procs)
            exit(1)

    except KeyboardInterrupt:
        logger.warning("KeyboardInterrupt, exit")
        terminate_local_procs(procs)
K
kuizhiqing 已提交
655
        return
656 657
    except SystemExit:
        logger.error(
658 659
            "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log."
            .format(nranks, error_rank))
660
        terminate_local_procs(procs)
661
        raise
662 663
    except:
        logger.error(
664 665
            "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log."
            .format(nranks, error_rank))
666
        terminate_local_procs(procs)
K
kuizhiqing 已提交
667
        return
668 669

    return alive
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700


def get_gpus(gpus):
    if gpus is None:
        gpus_num = fluid.core.get_cuda_device_count()
        res_gpus = [str(x) for x in range(0, gpus_num)]
    else:
        cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
        if cuda_visible_devices is None or cuda_visible_devices == "":
            res_gpus = [x.strip() for x in gpus.split(',')]
        else:
            # change gpus into relative values
            # e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.gpus=4,5,6,7;
            # therefore gpus=0,1,2,3
            cuda_visible_devices_list = cuda_visible_devices.split(',')
            for x in gpus.split(','):
                assert x in cuda_visible_devices_list, "Can't find "\
                    "your gpus %s in CUDA_VISIBLE_DEVICES[%s]."\
                    % (x, cuda_visible_devices)
            res_gpus = [
                cuda_visible_devices_list.index(x.strip())
                for x in gpus.split(',')
            ]
            logger.info("Change selected_gpus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "CUDA_VISIBLE_DEVICES:{}".format(
                            gpus, res_gpus, cuda_visible_devices_list))

    return res_gpus


701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
def get_xpus(xpus):
    if xpus is None:
        xpus_num = fluid.core.get_xpu_device_count()
        res_xpus = [str(x) for x in range(0, xpus_num)]
    else:
        xpu_visible_devices = os.getenv("XPU_VISIBLE_DEVICES")
        if xpu_visible_devices is None or xpu_visible_devices == "":
            res_xpus = [x.strip() for x in xpus.split(',')]
        else:
            # change xpus into relative values
            # e.g. XPU_VISIBLE_DEVICES=4,5,6,7; args.xpus=4,5,6,7;
            # therefore xpus=0,1,2,3
            xpu_visible_devices_list = xpu_visible_devices.split(',')
            for x in xpus.split(','):
                assert x in xpu_visible_devices_list, "Can't find "\
                    "your xpus %s in XPU_VISIBLE_DEVICES[%s]."\
                    % (x, xpu_visible_devices)
            res_xpus = [
                xpu_visible_devices_list.index(x.strip())
                for x in xpus.split(',')
            ]
            logger.info("Change selected_xpus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "XPU_VISIBLE_DEVICES:{}".format(
                            xpus, res_xpus, xpu_visible_devices_list))

    return res_xpus


K
kuizhiqing 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
def get_npus(npus):
    if npus is None:
        npus_num = fluid.core.get_npu_device_count()
        res_npus = [str(x) for x in range(0, npus_num)]
    else:
        npu_visible_devices = os.getenv("ASCEND_VISIBLE_DEVICES")
        if npu_visible_devices is None or npu_visible_devices == "":
            res_npus = [x.strip() for x in npus.split(',')]
        else:
            # change npus into relative values
            # e.g. ASCEND_VISIBLE_DEVICES=4,5,6,7; args.npus=4,5,6,7;
            # therefore npus=0,1,2,3
            npu_visible_devices_list = npu_visible_devices.split(',')
            for x in npus.split(','):
                assert x in npu_visible_devices_list, "Can't find "\
                    "your npus %s in ASCEND_VISIBLE_DEVICES[%s]."\
                    % (x, npu_visible_devices)
            res_npus = [
                npu_visible_devices_list.index(x.strip())
                for x in npus.split(',')
            ]
            logger.info("Change selected_npus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "ASCEND_VISIBLE_DEVICES:{}".format(
                            npus, res_npus, npu_visible_devices_list))

    return res_npus


Z
zn 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
def get_mlus(mlus):
    if mlus is None:
        mlus_num = fluid.core.get_mlu_device_count()
        res_mlus = [str(x) for x in range(0, mlus_num)]
    else:
        mlu_visible_devices = os.getenv("MLU_VISIBLE_DEVICES")
        if mlu_visible_devices is None or mlu_visible_devices == "":
            res_mlus = [x.strip() for x in mlus.split(',')]
        else:
            # change mlus into relative values
            # e.g. MLU_VISIBLE_DEVICES=4,5,6,7; args.mlus=4,5,6,7;
            # therefore mlus=0,1,2,3
            mlu_visible_devices_list = mlu_visible_devices.split(',')
            for x in mlus.split(','):
                assert x in mlu_visible_devices_list, "Can't find "\
                    "your mlus %s in MLU_VISIBLE_DEVICES[%s]."\
                    % (x, mlu_visible_devices)
            res_mlus = [
                mlu_visible_devices_list.index(x.strip())
                for x in mlus.split(',')
            ]
            logger.info("Change selected_mlus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "MLU_VISIBLE_DEVICES:{}".format(
                            mlus, res_mlus, mlu_visible_devices_list))

    return res_mlus


X
xiongkun 已提交
788
def get_device_mode(backend):
K
kuizhiqing 已提交
789 790 791 792 793 794 795 796 797 798
    if backend == 'heter':
        if fluid.core.is_compiled_with_cuda() and \
            fluid.core.get_cuda_device_count() > 0:
            print("launch train in heter mode with GPU device.")
            return DeviceMode.GPU
        if fluid.core.is_compiled_with_xpu() and \
            fluid.core.get_xpu_device_count() > 0:
            print("launch train in heter mode with XPU device.")
            return DeviceMode.XPU
        if fluid.core.is_compiled_with_npu() and \
B
Baibaifan 已提交
799
            fluid.core.get_npu_device_count() > 0:
K
kuizhiqing 已提交
800 801 802 803
            print("launch train in heter mode with NPU device.")
            return DeviceMode.ASCEND_NPU

    if backend == 'hccl' and fluid.core.get_npu_device_count() > 0:
804 805 806
        print("launch train in ascend npu mode!")
        return DeviceMode.ASCEND_NPU

X
xiongkun 已提交
807
    if backend == 'nccl' and \
808 809
            fluid.core.get_cuda_device_count() > 0:
        print("launch train in GPU mode!")
810
        return DeviceMode.GPU
811

X
xiongkun 已提交
812
    if backend == 'bkcl' and fluid.core.get_xpu_device_count() > 0:
813 814
        print("launch train in XPU mode")
        return DeviceMode.XPU
815

Z
zn 已提交
816 817 818 819
    if backend == 'cncl' and fluid.core.get_mlu_device_count() > 0:
        print("launch train in MLU mode")
        return DeviceMode.MLU

X
xiongkun 已提交
820 821 822 823 824
    if backend == 'gloo':
        print("launch train in CPU mode")
        return DeviceMode.CPU

    raise RuntimeError("Don't supported devices")
825 826 827 828


def get_device_proc_info(args):
    # device_mode
X
xiongkun 已提交
829
    device_mode = get_device_mode(args.backend)
830 831 832 833 834 835 836

    # devices
    devices_per_proc = []
    if device_mode == DeviceMode.GPU:
        gpus = get_gpus(args.gpus)
        if args.nproc_per_node is not None:
            assert (len(gpus) % int(args.nproc_per_node)) ==0, \
J
Jiangxinz 已提交
837
                "gpus' number:{} mod args.nproc_per_node:{} must == 0".format(len(gpus), args.nproc_per_node)
838 839 840 841 842 843 844

            n = int(len(gpus) / int(args.nproc_per_node))
            devices_per_proc = [
                gpus[i:i + n] for i in six.moves.range(0, len(gpus), n)
            ]
        else:
            devices_per_proc = gpus
845
    elif device_mode == DeviceMode.ASCEND_NPU:
K
kuizhiqing 已提交
846 847 848 849 850 851 852 853 854 855 856
        npus = get_npus(args.npus)
        if args.nproc_per_node is not None:
            assert (len(npus) % int(args.nproc_per_node)) ==0, \
                "npus' number:{} mod args.nproc_per_node:{} must == 0".format(len(npus), args.nproc_per_node)

            n = int(len(npus) / int(args.nproc_per_node))
            devices_per_proc = [
                npus[i:i + n] for i in six.moves.range(0, len(npus), n)
            ]
        else:
            devices_per_proc = npus
857 858 859 860
    elif device_mode == DeviceMode.XPU:
        xpus = get_xpus(args.xpus)
        if args.nproc_per_node is not None:
            assert (len(xpus) % int(args.nproc_per_node)) == 0, \
J
Jiangxinz 已提交
861
                "xpus' number:{} mod args.nproc_per_node:{} must == 0".format(len(xpus), args.nproc_per_node)
862 863 864 865 866 867 868

            n = int(len(xpus) / int(args.nproc_per_node))
            devices_per_proc = [
                xpus[i:i + n] for i in six.moves.range(0, len(xpus), n)
            ]
        else:
            devices_per_proc = xpus
Z
zn 已提交
869 870 871 872 873 874 875 876 877 878 879 880
    elif device_mode == DeviceMode.MLU:
        mlus = get_mlus(args.mlus)
        if args.nproc_per_node is not None:
            assert (len(mlus) % int(args.nproc_per_node)) ==0, \
                "mlus' number:{} mod args.nproc_per_node:{} must == 0".format(len(mlus), args.nproc_per_node)

            n = int(len(mlus) / int(args.nproc_per_node))
            devices_per_proc = [
                mlus[i:i + n] for i in six.moves.range(0, len(mlus), n)
            ]
        else:
            devices_per_proc = mlus
881
    elif device_mode == DeviceMode.CPU:
X
xiongkun 已提交
882 883 884
        if hasattr(args, "paddle_cpuonly") and args.nproc_per_node is None:
            #NOTE (xiongkun03) set it to cpu core number
            args.nproc_per_node = multiprocessing.cpu_count()
885 886 887 888 889
        if args.nproc_per_node is None:
            devices_per_proc = [0]
        else:
            devices_per_proc = [x for x in range(0, args.nproc_per_node)]
    else:
890
        assert False, "Can't support device_mode:{}, support only cpu|gpu|xpu now.".format(
891 892 893 894 895
            device_mode)

    return (device_mode, devices_per_proc)


896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
def direct_start(args):
    # run ps-cpu mode on paddlecloud, using given envs
    cmd = [sys.executable, "-u", args.training_script] + \
        args.training_script_args
    proc = subprocess.Popen(cmd)
    proc.wait()
    return


def get_custom_endpoints(origin_endpoints, offset=0):
    """
    origin_endpoint: ip:port
    user_define_endpoint: ip:(port+offset)
    """
    assert origin_endpoints != None
    paddle_user_define_endpoints_list = []
    for ip_port in origin_endpoints.split(","):
        ip = ip_port.split(":")[0]
        port = ip_port.split(":")[1]
        new_port = int(port) + offset
        paddle_user_define_endpoints_list.append(":".join((ip, str(new_port))))
    paddle_user_define_endpoints = ",".join(paddle_user_define_endpoints_list)
    return paddle_user_define_endpoints


921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
#def cloud_ps_heter_env_set(args):
#    environs = {}
#
#    paddle_trainer_endpoints = os.getenv("TRAINER_IP_PORT_LIST", "")
#    assert paddle_trainer_endpoints != None
#
#    paddle_pserver_endpoints = os.getenv("PSERVER_IP_PORT_LIST", "")
#    assert paddle_pserver_endpoints != None
#
#    # hard code for paddlecloud custom-framework
#    avilable_ports = os.getenv("TRAINER_PORTS", "").split(",")
#    assert len(
#        avilable_ports
#    ) >= 2, "set paddle_ports_num >= 2 in config.ini for paddlecloud job submit"
#
#    # hard code for paddlecloud custom-framework
#    trainers_num = len(paddle_pserver_endpoints.split(","))
#    assert trainers_num != 0
#    environs["PADDLE_TRAINERS_NUM"] = trainers_num
#    environs["TRAINERS_NUM"] = trainers_num
#
#    # hard code for paddlecloud custom-framework
#    environs["PADDLE_HETER_TRAINER_IP_PORT_LIST"] = paddle_trainer_endpoints
#    environs["PADDLE_PSERVERS_IP_PORT_LIST"] = paddle_pserver_endpoints
#    environs["PADDLE_TRAINER_ENDPOINTS"] = get_custom_endpoints(
#        paddle_pserver_endpoints, 1)
#    heter_worker_num = len(paddle_trainer_endpoints.split(","))
#    if (args.heter_worker_num != None) and (
#            heter_worker_num != args.heter_worker_num):
#        warnings.warn(
#            "Your fleetrun setting: heter_worker_num is {}, but we find {} device can be used, this setting has been changed.".
#            format(args.heter_worker_num, heter_worker_num))
#        args.heter_worker_num = heter_worker_num
#
#    for k, v in environs.items():
#        os.environ[k] = str(v)
#    logger.info("Set heter parameter server env: {}".format(
#        pretty_print_envs(environs)))
959 960


961 962 963
def get_mapped_cluster_without_rank_mapping(node_ips, node_ip,
                                            trainer_endpoints, device_mode,
                                            node_ranks):
964 965 966 967 968 969 970 971 972 973 974 975
    assert type(trainer_endpoints) is list, "trainer_endpoints must be list"
    assert device_mode == DeviceMode.GPU, \
        "Only support get mapped cluster for gpu now."
    cluster = Cluster(hdfs=None)
    for node_rank, ip in enumerate(node_ips):
        pod = Pod()
        pod.rank = node_rank
        pod.addr = ip
        pod.device_mode = device_mode
        cur_node_endpoints = trainer_endpoints[node_rank]

        # choose rank from global mapped ranks and set it to the trainer.
976 977
        ranks_per_node = node_ranks[node_rank]
        assert len(ranks_per_node) == 1
978 979 980 981
        for i in range(len(ranks_per_node)):
            trainer = Trainer()
            trainer.endpoint = "%s" % (cur_node_endpoints[i])
            trainer.rank = ranks_per_node[i]
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
            pod.trainers.append(trainer)
        cluster.pods.append(pod)

    pod_rank = node_ips.index(node_ip)
    return cluster, cluster.pods[pod_rank]


def get_mapped_cluster_from_args_without_rank_mapping(args, device_mode):
    assert device_mode == DeviceMode.GPU, \
        "Only support get mapped cluster for gpu now."
    gpus_num = fluid.core.get_cuda_device_count()

    # parse ip-ranks json file
    cluster_topo = None
    with open(args.cluster_topo_path, "r") as json_file:
        cluster_topo = json.load(json_file)

    node_ips = []
    node_ranks = []
    for idx, cur_cluster_topo in enumerate(cluster_topo["machines"]):
        node_ips.append(cur_cluster_topo['addr'])
        node_ranks.append([idx])

    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()

    assert node_ip in node_ips, \
        "Can't find your local ip {%s} in node_ips: {%s}" % (node_ip, node_ips)
    node_rank = node_ips.index(node_ip)

    assert len(node_ranks) == len(node_ips), \
        "ranks length should be equal to ips length."

    logger.debug("parsed from args: node_ips:{} node_ip:{} "
1021 1022 1023
                 "node_rank:{} node_ranks:{}".format(node_ips, node_ip,
                                                     node_rank,
                                                     node_ranks[node_rank]))
1024 1025 1026 1027 1028 1029 1030 1031 1032

    # NOTE: there are different number of global mapped ranks on each node.
    free_ports = []
    trainer_endpoints = []
    for ip in node_ips:
        node_rank = node_ips.index(ip)
        if os.environ.get('PADDLE_PORT') is not None:
            start_port = int(os.getenv("PADDLE_PORT", ""))
            free_ports = [
1033 1034
                x for x in range(start_port, start_port +
                                 len(node_ranks[node_rank]))
1035 1036 1037 1038
            ]
        elif os.environ.get('FLAGS_START_PORT') is not None:
            start_port = int(os.environ.get('FLAGS_START_PORT'))
            free_ports = [
1039 1040
                x for x in range(start_port, start_port +
                                 len(node_ranks[node_rank]))
1041 1042 1043 1044 1045
            ]
        else:
            free_ports = find_free_ports(len(node_ranks[node_rank]))
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])

1046 1047 1048
    return get_mapped_cluster_without_rank_mapping(node_ips, node_ip,
                                                   trainer_endpoints,
                                                   device_mode, node_ranks)
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076


def get_mapped_cluster_with_rank_mapping(node_ips, node_ip, trainer_endpoints,
                                         device_mode, node_ranks,
                                         node_rank_mappings):
    assert type(trainer_endpoints) is list, "trainer_endpoints must be list"
    assert device_mode == DeviceMode.GPU, \
        "Only support get mapped cluster for gpu now."

    def get_relative_gpu_id(gpu_id):
        cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
        if cuda_visible_devices is None or cuda_visible_devices == "":
            return gpu_id
        else:
            cuda_visible_devices_list = cuda_visible_devices.split(',')
            relative_id = cuda_visible_devices_list.index(str(gpu_id))
            logger.info(
                "Change gpu id from {} to {} based on CUDA_VISIBLE_DEVICES {}".
                format(gpu_id, relative_id, cuda_visible_devices_list))
            return relative_id

    cluster = Cluster(hdfs=None)
    for node_rank, ip in enumerate(node_ips):
        pod = Pod()
        pod.rank = node_rank
        pod.addr = ip
        pod.device_mode = device_mode
        cur_node_endpoints = trainer_endpoints[node_rank]
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086
        # choose rank from global mapped ranks and set it to the trainer.
        ranks_per_node = node_ranks[node_rank]
        cur_node_rank_mapping = node_rank_mappings[node_rank]
        for i in range(len(ranks_per_node)):
            trainer = Trainer()
            local_device_ids = cur_node_rank_mapping["ranks"][str(
                ranks_per_node[i])]
            assert len(local_device_ids) == 1, \
                "Only support one process to one device mapping"
1087 1088
            trainer.accelerators.append(get_relative_gpu_id(
                local_device_ids[0]))
1089 1090
            trainer.endpoint = "%s" % (cur_node_endpoints[i])
            trainer.rank = ranks_per_node[i]
1091 1092 1093 1094 1095 1096 1097
            pod.trainers.append(trainer)
        cluster.pods.append(pod)

    pod_rank = node_ips.index(node_ip)
    return cluster, cluster.pods[pod_rank]


1098
def get_mapped_cluster_from_args_with_rank_mapping(args, device_mode):
1099 1100 1101 1102 1103
    assert device_mode == DeviceMode.GPU, \
        "Only support get mapped cluster for gpu now."
    gpus_num = fluid.core.get_cuda_device_count()

    # parse ip-ranks json file
1104 1105 1106 1107 1108 1109 1110
    rank_mapping_path = args.rank_mapping_path or os.getenv(
        "PADDLE_RANK_MAPPING_PATH")
    rank_mapping = None
    with open(rank_mapping_path, "r") as json_file:
        rank_mapping = json.load(json_file)
    # reset PADDLE_RANK_MAPPING_PATH env
    os.environ["PADDLE_RANK_MAPPING_PATH"] = ""
1111 1112

    node_ips = []
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    node_ranks = []
    node_rank_mappings = []
    for cur_rank_mapping in rank_mapping:
        node_ips.append(cur_rank_mapping['addr'])
        cur_node_rank_list = [
            int(i) for i in list(cur_rank_mapping['ranks'].keys())
        ]
        cur_node_rank_list.sort()
        node_ranks.append(cur_node_rank_list)
        node_rank_mappings.append(cur_rank_mapping)
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()

    assert node_ip in node_ips, \
        "Can't find your local ip {%s} in node_ips: {%s}" % (node_ip, node_ips)
    node_rank = node_ips.index(node_ip)

1136
    assert len(node_ranks[node_rank]) <= gpus_num, \
1137
        "number of ranks mapped to one node should not exceed the avaiable ones."
1138
    assert len(node_ranks) == len(node_ips), \
1139 1140 1141
        "ranks length should be equal to ips length."

    logger.debug("parsed from args: node_ips:{} node_ip:{} "
1142 1143 1144
                 "node_rank:{} node_ranks:{}".format(node_ips, node_ip,
                                                     node_rank,
                                                     node_ranks[node_rank]))
1145 1146 1147 1148 1149 1150

    # NOTE: there are different number of global mapped ranks on each node.
    free_ports = []
    trainer_endpoints = []
    for ip in node_ips:
        node_rank = node_ips.index(ip)
1151 1152 1153
        if os.environ.get('PADDLE_PORT') is not None:
            start_port = int(os.getenv("PADDLE_PORT", ""))
            free_ports = [
1154 1155
                x for x in range(start_port, start_port +
                                 len(node_ranks[node_rank]))
1156 1157
            ]
        elif os.environ.get('FLAGS_START_PORT') is not None:
1158
            start_port = int(os.environ.get('FLAGS_START_PORT'))
1159
            free_ports = [
1160 1161
                x for x in range(start_port, start_port +
                                 len(node_ranks[node_rank]))
1162
            ]
1163
        else:
1164
            free_ports = find_free_ports(len(node_ranks[node_rank]))
1165 1166
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])

1167 1168 1169
    return get_mapped_cluster_with_rank_mapping(node_ips, node_ip,
                                                trainer_endpoints, device_mode,
                                                node_ranks, node_rank_mappings)
1170 1171


1172
class ParameterServerLauncher(object):
1173

1174 1175 1176
    def __init__(self, args, distribute_mode):
        self.args = args
        self.distribute_mode = distribute_mode
1177
        self.with_coordinator = False
1178 1179 1180
        self.server_num = 0
        self.worker_num = 0
        self.heter_worker_num = 0
1181
        self.coordinator_num = 0
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

        self.server_endpoints = ""
        self.server_endpoints_ips = []
        self.server_endpoints_port = []

        self.worker_endpoints = ""
        self.worker_endpoints_ips = []
        self.worker_endpoints_port = []

        self.heter_worker_endpoints = ""
        self.heter_worker_endpoints_ips = []
        self.heter_worker_endpoints_port = []

1195 1196 1197 1198
        self.coordinator_endpoints = ""
        self.coordinator_endpoints_ips = []
        self.coordinator_endpoints_port = []

1199 1200 1201
        self.is_local = True
        self.current_node_ip = ""

1202 1203 1204 1205 1206 1207
        self.stage_trainer_num = []
        self.stage_heter_map = {}
        self.stage_list = []
        self.stage_device_map = {}
        self.stage_num = 0

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
        self.get_role_endpoints(args)

    def get_role_endpoints(self, args):
        if args.server_num:
            self.server_num = args.server_num
            if args.servers:
                assert len(
                    args.servers.split(",")
                ) == self.server_num, "The server_num and servers doesn't match. Expect servers endpoints num epual to server_num, but received servers enpoint num: {} and server_num {}".format(
                    len(args.servers.split(",")), self.server_num)
                self.server_endpoints = args.servers
            else:
                ports = get_ports(self.server_num, 0)
                self.server_endpoints = ",".join(
                    ["127.0.0.1:" + str(x) for x in ports])
        else:
            assert args.servers != "", "The setting of Parameter-Server must has server_num or servers."
            self.server_endpoints = args.servers
            self.server_num = len(self.server_endpoints.split(","))

        # get worker envs
        if args.worker_num:
            self.worker_num = args.worker_num
            if args.workers:
                assert len(
                    args.workers.split(",")
                ) == self.worker_num, "The worker_num and workers doesn't match. Expect workers endpoints num epual to worker_num, but received workers enpoint num: {} and worker_num {}".format(
                    len(args.workers.split(",")), self.worker_num)

                self.worker_endpoints = args.workers
            else:
                ports = get_ports(self.worker_num, self.server_num)
                self.worker_endpoints = ",".join(
                    ["127.0.0.1:" + str(x) for x in ports])
        else:
            assert args.workers != "", "The setting of Parameter-Server must has worker_num or workers."
            worker_endpoints_ips = [
                x.strip().split(":")[0] for x in args.workers.split(",")
            ]
            self.worker_num = len(worker_endpoints_ips)
            worker_endpoints_len = [
                len(x.strip().split(":")) for x in args.workers.split(",")
            ]

            if 1 in worker_endpoints_len:
                # if no port value in worker_endpoints, will set default port values.
                start_port = 6170
                worker_endpoints_port = range(
                    start_port + self.server_num,
                    start_port + self.server_num + self.worker_num, 1)
                # create endpoints str
                worker_endpoints = []
                for i in range(self.worker_num):
1261 1262 1263
                    worker_endpoints.append(":".join(
                        (worker_endpoints_ips[i],
                         str(worker_endpoints_port[i]))))
1264 1265 1266 1267
                self.worker_endpoints = ",".join(worker_endpoints)
            else:
                self.worker_endpoints = args.workers

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
        # get coordinator envs
        if args.coordinator_num:
            self.with_coordinator = True
            self.coordinator_num = args.coordinator_num
            if args.coordinators:
                assert len(
                    args.coordinators.split(",")
                ) == self.coordinator_num, "The coordinator_num and coordinators doesn't match. Expect coordinators endpoints num epual to coordinator_num, but received coordinator enpoint num: {} and coordinator_num {}".format(
                    len(args.coordinators.split(",")), self.coordinator_num)

                self.coordinator_endpoints = args.coordinators
            else:
                ports = get_ports(self.coordinator_num, 1)
                self.coordinator_endpoints = ",".join(
                    ["127.0.0.1:" + str(x) for x in ports])
                print(">>> use default coordinator addr(only one process)")

1285 1286
        # get heter worker envs
        if self.distribute_mode == DistributeMode.PS_HETER:
1287 1288 1289 1290 1291 1292 1293
            assert args.heter_devices != "", "The setting of Parameter-Server heter mode must has heter_devices."
            self.stage_device_map[1] = "cpu"  #  for cpu trainer
            heter_devices_list = args.heter_devices.split(";")
            for i in range(len(heter_devices_list)):
                self.stage_device_map[i + 2] = heter_devices_list[i]

            self.stage_heter_map[1] = self.worker_endpoints
1294
            if args.heter_worker_num:
1295
                self.stage_heter_trainer_num = args.heter_worker_num.split(";")
1296 1297 1298 1299 1300
                self.stage_heter_trainer_num = [
                    int(trainer_num)
                    for trainer_num in self.stage_heter_trainer_num
                ]

1301
                if args.heter_workers:
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
                    assert len(args.heter_workers.split(";")) == len(
                        self.stage_heter_trainer_num
                    ), "The stage_num and heter_workers doesn't match. Expect heter_workers endpoints stage num epual to heter_worker_num stage, but received heter_workers enpoint stage num: {} and heter_worker_num stage {}".format(
                        len(args.heter_workers.split(";")),
                        len(self.stage_heter_trainer_num))
                    heter_worker_endpoints_list = args.heter_workers.split(";")
                    self.heter_worker_endpoints = ""
                    for i in range(len(self.stage_heter_trainer_num)):
                        if self.heter_worker_endpoints != "":
                            self.heter_worker_endpoints += ","
                        heter_worker_endpoints = heter_worker_endpoints_list[
                            i].split(",")
                        assert len(
                            heter_worker_endpoints
                        ) == self.stage_heter_trainer_num[
                            i], "The heter trainer num in stage {} is not equal in args.heter_worker_num and args.heter_workers".format(
                                i)

                        heter_worker_endpoints_ips = [
                            x.strip().split(":")[0]
                            for x in heter_worker_endpoints
                        ]
                        heter_worker_endpoints_len = [
                            len(x.strip().split(":"))
                            for x in heter_worker_endpoints
                        ]

                        if 1 in heter_worker_endpoints_len:
                            # if no port value in heter_worker_endpoint, will set default port values.
                            heter_worker_endpoints_port = get_ports(
1332 1333 1334
                                len(heter_worker_endpoints_ips),
                                self.worker_num + self.server_num +
                                self.heter_worker_num)
1335 1336
                            new_heter_worker_endpoints = []
                            for j in range(len(heter_worker_endpoints_ips)):
1337 1338 1339
                                new_heter_worker_endpoints.append(":".join(
                                    (heter_worker_endpoints_ips[j],
                                     str(heter_worker_endpoints_port[j]))))
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
                            ip_port_list = ",".join(new_heter_worker_endpoints)
                        else:
                            ip_port_list = ",".join(heter_worker_endpoints)

                        self.stage_heter_map[i + 2] = ip_port_list
                        self.stage_list.extend([i + 2] *
                                               len(ip_port_list.split(',')))

                        self.heter_worker_num += self.stage_heter_trainer_num[i]
                        self.heter_worker_endpoints += ip_port_list
1350
                else:
1351 1352
                    for i in range(len(self.stage_heter_trainer_num)):
                        heter_trainer_num = self.stage_heter_trainer_num[i]
1353 1354 1355
                        ports = get_ports(
                            heter_trainer_num, self.server_num +
                            self.worker_num + self.heter_worker_num)
1356 1357 1358 1359 1360 1361 1362 1363 1364
                        ip_port_list = ",".join(
                            ["127.0.0.1:" + str(x) for x in ports])
                        self.stage_heter_map[i + 2] = ip_port_list
                        self.stage_list.extend([i + 2] *
                                               len(ip_port_list.split(',')))
                        self.heter_worker_num += heter_trainer_num
                        if self.heter_worker_endpoints != "":
                            self.heter_worker_endpoints += ","
                        self.heter_worker_endpoints += ip_port_list
1365 1366
            else:
                assert args.heter_workers != "", "The setting of Parameter-Server heter mode must has heter_worker_num or heter_workers."
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
                self.stage_heter_trainer_num = []
                heter_worker_endpoints_list = args.heter_workers.split(";")
                self.heter_worker_endpoints = ""
                for i in range(len(heter_worker_endpoints_list)):
                    heter_worker_endpoints = heter_worker_endpoints_list[
                        i].split(",")
                    self.stage_heter_trainer_num.append(
                        len(heter_worker_endpoints))
                    heter_worker_endpoints_ips = [
                        x.strip().split(":")[0] for x in heter_worker_endpoints
                    ]
                    heter_worker_endpoints_len = [
                        len(x.strip().split(":"))
                        for x in heter_worker_endpoints
                    ]
                    if 1 in heter_worker_endpoints_len:
                        # if no port value in heter_worker_endpoint, will set default port values.
                        heter_worker_endpoints_port = get_ports(
                            len(heter_worker_endpoints_ips), self.worker_num +
                            self.server_num + self.heter_worker_num)

                        new_heter_worker_endpoints = []
                        for j in range(len(heter_worker_endpoints_ips)):
1390 1391 1392
                            new_heter_worker_endpoints.append(":".join(
                                (heter_worker_endpoints_ips[j],
                                 str(heter_worker_endpoints_port[j]))))
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
                        ip_port_list = ",".join(new_heter_worker_endpoints)
                    else:
                        ip_port_list = ",".join(heter_worker_endpoints)

                    self.stage_heter_map[i + 2] = ip_port_list
                    self.stage_list.extend([i + 2] *
                                           len(ip_port_list.split(',')))

                    self.heter_worker_num += self.stage_heter_trainer_num[-1]
                    if self.heter_worker_endpoints != "":
                        self.heter_worker_endpoints += ","
                    self.heter_worker_endpoints += ip_port_list

            self.stage_trainer_num = [self.worker_num
                                      ] + self.stage_heter_trainer_num
            self.stage_num = len(self.stage_trainer_num)

        # get http_port
        if args.http_port:
1412
            http_port = [args.http_port]
1413 1414 1415
        else:
            http_port = get_ports(
                1, self.server_num + self.worker_num + self.heter_worker_num)
1416 1417
        http_ip = self.server_endpoints.split(",")[0].split(":")[0]
        self.http_port = http_ip + ":" + str(http_port[0])
1418 1419 1420 1421 1422 1423 1424 1425

        # check local or user define
        self.server_endpoints_ips = [
            x.strip().split(":")[0] for x in self.server_endpoints.split(",")
        ]
        self.worker_endpoints_ips = [
            x.strip().split(":")[0] for x in self.worker_endpoints.split(",")
        ]
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

        if self.with_coordinator == True:
            self.coordinator_endpoints_ips = [
                x.strip().split(":")[0]
                for x in self.coordinator_endpoints.split(",")
            ]
            self.coordinator_endpoints_port = [
                x.strip().split(":")[1]
                for x in self.coordinator_endpoints.split(",")
            ]

1437 1438 1439 1440 1441 1442
        self.server_endpoints_port = [
            x.strip().split(":")[1] for x in self.server_endpoints.split(",")
        ]
        self.worker_endpoints_port = [
            x.strip().split(":")[1] for x in self.worker_endpoints.split(",")
        ]
1443 1444 1445 1446 1447 1448 1449 1450
        self.node_ips = []
        for ip in self.server_endpoints_ips:
            if ip not in self.node_ips:
                self.node_ips.append(ip)
        for ip in self.worker_endpoints_ips:
            if ip not in self.node_ips:
                self.node_ips.append(ip)

1451 1452 1453 1454 1455 1456 1457 1458 1459
        if self.distribute_mode == DistributeMode.PS_HETER:
            self.heter_worker_endpoints_ips = [
                x.strip().split(":")[0]
                for x in self.heter_worker_endpoints.split(",")
            ]
            self.heter_worker_endpoints_port = [
                x.strip().split(":")[1]
                for x in self.heter_worker_endpoints.split(",")
            ]
1460 1461 1462
            for ip in self.heter_worker_endpoints_ips:
                if ip not in self.node_ips:
                    self.node_ips.append(ip)
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

        if len(set(self.node_ips)) == 1:
            self.is_local = True
            self.current_node_ip = self.node_ips[0]
        else:
            self.is_local = False
            pod_ip = os.getenv("POD_IP", None)
            if pod_ip == None:
                _, self.current_node_ip = get_host_name_ip()
            else:
                self.current_node_ip = pod_ip
1474 1475 1476 1477 1478 1479 1480 1481
            if not self.distribute_mode == DistributeMode.PS_HETER:
                assert self.current_node_ip in self.node_ips, "Can't find your local ip {%s} in args.servers and args.workers ips: {%s}" \
                      % (self.current_node_ip, self.node_ips)
        if self.current_node_ip in self.node_ips:
            self.node_rank = self.node_ips.index(self.current_node_ip)
            logger.debug(
                "parsed from args: node_ips:{} current_node_ip:{} node_rank:{}".
                format(self.node_ips, self.current_node_ip, self.node_rank))
1482 1483

    def start_ps(self):
1484
        if self.current_node_ip not in self.node_ips:
1485
            return
1486 1487 1488 1489
        cluster = Cluster(hdfs=None)
        server_rank = 0
        worker_rank = 0
        heter_worker_rank = 0
1490
        coordinator_rank = 0
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
        for node_rank, ip in enumerate(self.node_ips):
            pod = Pod()
            pod.rank = node_rank
            pod.addr = ip
            for i in range(len(self.server_endpoints_ips)):
                if ip == self.server_endpoints_ips[i]:
                    server = Trainer()
                    server.endpoint = "%s:%s" % (ip,
                                                 self.server_endpoints_port[i])
                    server.rank = server_rank
                    server_rank += 1
                    pod.servers.append(server)
            for j in range(len(self.worker_endpoints_ips)):
                if ip == self.worker_endpoints_ips[j]:
                    worker = Trainer()
                    worker.endpoint = "%s:%s" % (ip,
                                                 self.worker_endpoints_port[j])
                    worker.rank = worker_rank
1509
                    worker.stage = 1
1510 1511
                    worker_rank += 1
                    pod.workers.append(worker)
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
            for m in range(len(self.coordinator_endpoints_ips)):
                if ip == self.coordinator_endpoints_ips[m]:
                    coordinator = Trainer()
                    coordinator.endpoint = "%s:%s" % (
                        ip, self.coordinator_endpoints_port[m])
                    coordinator.rank = coordinator_rank
                    coordinator.stage = 1
                    coordinator_rank += 1
                    pod.coordinators.append(coordinator)

1522 1523 1524 1525 1526 1527
            for k in range(len(self.heter_worker_endpoints_ips)):
                if ip == self.heter_worker_endpoints_ips[k]:
                    heter_worker = Trainer()
                    heter_worker.endpoint = "%s:%s" % (
                        ip, self.heter_worker_endpoints_port[k])
                    heter_worker.rank = heter_worker_rank
1528
                    heter_worker.stage = self.stage_list[k]
1529 1530 1531 1532 1533 1534 1535 1536 1537
                    heter_worker_rank += 1
                    pod.heter_workers.append(heter_worker)

            cluster.pods.append(pod)

        pod = cluster.pods[self.node_rank]
        self.gloo_rendezvous_dir = tempfile.mkdtemp()

        # 3. subproces start
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
        self.procs = {
            "worker": [],
            "coordinator": [],
            "server": [],
            "heter_worker": []
        }
        self.cmds = {
            "worker": [],
            "coordinator": [],
            "server": [],
            "heter_worker": []
        }
        self.log_fns = {
            "worker": [],
            "coordinator": [],
            "server": [],
            "heter_worker": []
        }
1556 1557 1558

        self.start_pod_server(self.args, pod)
        self.start_pod_worker(self.args, pod)
1559 1560
        if self.with_coordinator:
            self.start_pod_coordinator(self.args, pod)
1561 1562
        if self.distribute_mode == DistributeMode.PS_HETER:
            self.start_pod_heter_worker(self.args, pod)
1563 1564

        logger.info(
1565 1566 1567
            "Please check servers, workers, coordinator and heter_worker logs in {}/workerlog.*, {}/serverlog.* , {}/coordinatorlog.*, and {}/heterlog.*"
            .format(self.args.log_dir, self.args.log_dir, self.args.log_dir,
                    self.args.log_dir))
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

        # 4. wait for finish training
        if len(self.procs["worker"]) > 0:
            # if node has worker procs
            # only wait worker to finish here
            for i, proc in enumerate(self.procs["worker"]):
                self.procs["worker"][i].proc.wait()
                if len(self.log_fns["worker"]) > 0:
                    self.log_fns["worker"][i].close()
            logger.info(
                "all workers exit, going to finish parameter server and heter_worker."
            )
            if len(self.procs["heter_worker"]) > 0:
                for i, proc in enumerate(self.procs["heter_worker"]):
                    self.log_fns["heter_worker"][i].close()
                    self.procs["heter_worker"][i].proc.terminate()
                logger.info("all heter_worker are killed")

            if len(self.procs["server"]) > 0:
                for i, proc in enumerate(self.procs["server"]):
                    self.log_fns["server"][i].close()
                    self.procs["server"][i].proc.terminate()
                logger.info("all parameter server are killed")

1592 1593 1594 1595 1596 1597
            if len(self.procs["coordinator"]) > 0:
                for i, proc in enumerate(self.procs["coordinator"]):
                    self.log_fns["coordinator"][i].close()
                    self.procs["coordinator"][i].proc.terminate()
                logger.info("all coordinators are killed")

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
        else:
            # if node has not worker procs
            # blocking training process
            if len(self.procs["server"]) > 0:
                for i, proc in enumerate(self.procs["server"]):
                    self.procs["server"][i].proc.wait()

            if len(self.procs["heter_worker"]) > 0:
                for i, proc in enumerate(self.procs["heter_worker"]):
                    self.procs["heter_worker"][i].proc.wait()

        if os.path.exists(self.gloo_rendezvous_dir):
            shutil.rmtree(self.gloo_rendezvous_dir)

    def start_pod_server(self, args, pod):
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)
        for idx, cur_server in enumerate(pod.servers):
1618 1619 1620 1621
            if self.distribute_mode == DistributeMode.PS_HETER:
                proc_env = {
                    "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                    "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
1622
                    "PADDLE_COORDINATOR_ENDPOINTS": self.coordinator_endpoints,
1623 1624 1625 1626 1627 1628
                    "PADDLE_ALL_HETER_TRAINER_IP_PORT_LIST":
                    self.heter_worker_endpoints,
                    "PADDLE_PORT": cur_server.endpoint.split(":")[1],
                    "TRAINING_ROLE": "PSERVER",
                    "PADDLE_TRAINERS_NUM": str(self.worker_num),
                    "POD_IP": cur_server.endpoint.split(":")[0],
1629
                    "PADDLE_WITH_GLOO": str(os.getenv("PADDLE_WITH_GLOO", "0")),
1630 1631 1632 1633 1634 1635 1636 1637
                    "PADDLE_GLOO_RENDEZVOUS": "3",
                    "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                    "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
                }
            else:
                proc_env = {
                    "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                    "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
1638
                    "PADDLE_COORDINATOR_ENDPOINTS": self.coordinator_endpoints,
1639 1640 1641 1642
                    "PADDLE_PORT": cur_server.endpoint.split(":")[1],
                    "TRAINING_ROLE": "PSERVER",
                    "PADDLE_TRAINERS_NUM": str(self.worker_num),
                    "POD_IP": cur_server.endpoint.split(":")[0],
1643
                    "PADDLE_WITH_GLOO": str(os.getenv("PADDLE_WITH_GLOO", "0")),
1644 1645 1646 1647
                    "PADDLE_GLOO_RENDEZVOUS": "3",
                    "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                    "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
                }
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
            current_env.update(proc_env)

            cmd = [sys.executable, "-u", args.training_script
                   ] + args.training_script_args
            self.cmds["server"].append(cmd)

            if idx == 0:
                logger.info(
                    "Local server start {} processes. First process distributed "
                    "environment info (Only For Debug): {}".format(
                        len(pod.servers),
1659 1660
                        pretty_print_envs(proc_env,
                                          ("Distributed Envs", "Value"))))
1661 1662 1663 1664 1665

            if args.log_dir is not None:
                os.system("mkdir -p {}".format(args.log_dir))
                fn = open("%s/serverlog.%d" % (args.log_dir, idx), "w")
                self.log_fns["server"].append(fn)
1666 1667 1668 1669
                proc = subprocess.Popen(cmd,
                                        env=current_env,
                                        stdout=fn,
                                        stderr=fn)
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
            else:
                proc = subprocess.Popen(cmd, env=current_env)

            tp = TrainerProc()
            tp.proc = proc
            tp.rank = cur_server.rank
            tp.local_rank = idx
            tp.log_fn = fn
            tp.log_offset = fn.tell() if fn else None
            tp.cmd = cmd

            self.procs["server"].append(tp)

    def start_pod_worker(self, args, pod):
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)

        heter_device_num = 0
        device_list = []
        if fluid.core.is_compiled_with_cuda():
            device_list = get_gpus(args.gpus)
            heter_device_num = len(device_list)
        elif fluid.core.is_compiled_with_xpu():
            heter_device_num = fluid.core.get_xpu_device_count()
            device_list = [str(x) for x in range(0, heter_device_num)]

        for idx, cur_worker in enumerate(pod.workers):
1699 1700
            device_id = "0" if heter_device_num == 0 else str(
                device_list[(idx) % heter_device_num])
1701 1702
            if self.distribute_mode == DistributeMode.PS_HETER:
                proc_env = {
1703 1704 1705 1706 1707 1708
                    "PADDLE_PSERVERS_IP_PORT_LIST":
                    self.server_endpoints,
                    "PADDLE_TRAINER_ENDPOINTS":
                    self.worker_endpoints,
                    "PADDLE_TRAINERS_NUM":
                    str(self.worker_num),
1709 1710
                    "PADDLE_COORDINATOR_ENDPOINTS":
                    self.coordinator_endpoints,
1711 1712 1713 1714 1715 1716 1717 1718
                    "PADDLE_STAGE_TRAINERS_NUM":
                    str(self.stage_trainer_num),
                    "STAGE_ID":
                    "1",
                    "STAGE_NUM":
                    str(self.stage_num),
                    "PADDLE_PREVIOUS_HETER_TRAINER_IP_PORT_LIST":
                    "",
1719 1720 1721 1722
                    "PADDLE_NEXT_HETER_TRAINER_IP_PORT_LIST":
                    self.stage_heter_map[2],
                    "PADDLE_ALL_HETER_TRAINER_IP_PORT_LIST":
                    self.heter_worker_endpoints,
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
                    "HETER_DEVICE_TYPE":
                    self.stage_device_map[1],
                    "TRAINING_ROLE":
                    "TRAINER",
                    "POD_IP":
                    cur_worker.endpoint.split(":")[0],
                    "PADDLE_PORT":
                    cur_worker.endpoint.split(":")[1],
                    "PADDLE_TRAINER_ID":
                    str(cur_worker.rank),
1733 1734
                    "PADDLE_WITH_GLOO":
                    str(os.getenv("PADDLE_WITH_GLOO", "0")),
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
                    "PADDLE_GLOO_RENDEZVOUS":
                    "3",
                    "PADDLE_GLOO_FS_PATH":
                    self.gloo_rendezvous_dir,
                    "FLAGS_selected_gpus":
                    "0",
                    "FLAGS_selected_xpus":
                    "0",
                    "CUDA_VISIBLE_DEVICES":
                    device_id,
                    "XPU_VISIBLE_DEVICES":
                    device_id,
                    "PADDLE_GLOO_HTTP_ENDPOINT":
                    self.http_port
1749 1750 1751 1752 1753 1754 1755
                }
            else:
                proc_env = {
                    "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                    "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
                    "PADDLE_TRAINERS_NUM": str(self.worker_num),
                    "TRAINING_ROLE": "TRAINER",
1756
                    "PADDLE_COORDINATOR_ENDPOINTS": self.coordinator_endpoints,
1757 1758 1759
                    "POD_IP": cur_worker.endpoint.split(":")[0],
                    "PADDLE_PORT": cur_worker.endpoint.split(":")[1],
                    "PADDLE_TRAINER_ID": str(cur_worker.rank),
1760
                    "PADDLE_WITH_GLOO": str(os.getenv("PADDLE_WITH_GLOO", "0")),
1761 1762 1763 1764 1765 1766 1767 1768
                    "PADDLE_GLOO_RENDEZVOUS": "3",
                    "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                    "FLAGS_selected_gpus": "0",
                    "FLAGS_selected_xpus": "0",
                    "CUDA_VISIBLE_DEVICES": device_id,
                    "XPU_VISIBLE_DEVICES": device_id,
                    "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
                }
1769

1770
            current_env.update(proc_env)
1771 1772 1773 1774 1775 1776 1777 1778 1779
            cmd = [sys.executable, "-u", args.training_script
                   ] + args.training_script_args
            self.cmds["worker"].append(cmd)

            if idx == 0:
                logger.info(
                    "Local worker start {} processes. First process distributed "
                    "environment info (Only For Debug): {}".format(
                        len(pod.workers),
1780 1781
                        pretty_print_envs(proc_env,
                                          ("Distributed Envs", "Value"))))
1782 1783 1784 1785 1786

            if args.log_dir is not None:
                os.system("mkdir -p {}".format(args.log_dir))
                fn = open("%s/workerlog.%d" % (args.log_dir, idx), "w")
                self.log_fns["worker"].append(fn)
1787 1788 1789 1790
                proc = subprocess.Popen(cmd,
                                        env=current_env,
                                        stdout=fn,
                                        stderr=fn)
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
            else:
                proc = subprocess.Popen(cmd, env=current_env)

            tp = TrainerProc()
            tp.proc = proc
            tp.rank = cur_worker.rank
            tp.local_rank = idx
            tp.log_fn = fn
            tp.log_offset = fn.tell() if fn else None
            tp.cmd = cmd

            self.procs["worker"].append(tp)

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
    def start_pod_coordinator(self, args, pod):
        print(">>> entering start_pod_coordinator")
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)

        for idx, cur_coordinator in enumerate(pod.coordinators):
            device_id = "0"
            proc_env = {
                "PADDLE_PSERVERS_IP_PORT_LIST": self.server_endpoints,
                "PADDLE_TRAINER_ENDPOINTS": self.worker_endpoints,
                "PADDLE_TRAINERS_NUM": str(self.worker_num),
                "PADDLE_COORDINATOR_ENDPOINTS": self.coordinator_endpoints,
                "PADDLE_COORDINATOR_NUM": str(self.coordinator_num),
                "TRAINING_ROLE": "COORDINATOR",
                "POD_IP": cur_coordinator.endpoint.split(":")[0],
                "PADDLE_PORT": cur_coordinator.endpoint.split(":")[1],
                "PADDLE_TRAINER_ID": str(cur_coordinator.rank),
                "PADDLE_WITH_GLOO": str(os.getenv("PADDLE_WITH_GLOO", "0")),
                "PADDLE_GLOO_RENDEZVOUS": "3",
                "PADDLE_GLOO_FS_PATH": self.gloo_rendezvous_dir,
                "FLAGS_selected_gpus": "0",
                "FLAGS_selected_xpus": "0",
                "CUDA_VISIBLE_DEVICES": device_id,
                "XPU_VISIBLE_DEVICES": device_id,
                "PADDLE_GLOO_HTTP_ENDPOINT": self.http_port
            }

            current_env.update(proc_env)
            cmd = [sys.executable, "-u", args.training_script
                   ] + args.training_script_args
            self.cmds["coordinator"].append(cmd)

            if idx == 0:
                logger.info(
                    "Local coordinator start {} processes. First process distributed "
                    "environment info (Only For Debug): {}".format(
                        len(pod.coordinators),
                        pretty_print_envs(proc_env,
                                          ("Distributed Envs", "Value"))))

            if args.log_dir is not None:
                os.system("mkdir -p {}".format(args.log_dir))
                fn = open("%s/coordinator.%d" % (args.log_dir, idx), "w")
                self.log_fns["coordinator"].append(fn)
                proc = subprocess.Popen(cmd,
                                        env=current_env,
                                        stdout=fn,
                                        stderr=fn)
            else:
                proc = subprocess.Popen(cmd, env=current_env)

            tp = TrainerProc()
            tp.proc = proc
            tp.rank = cur_coordinator.rank
            tp.local_rank = idx
            tp.log_fn = fn
            tp.log_offset = fn.tell() if fn else None
            tp.cmd = cmd

            self.procs["coordinator"].append(tp)

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
    def start_pod_heter_worker(self, args, pod):
        default_env = os.environ.copy()
        current_env = copy.copy(default_env)
        current_env.pop("http_proxy", None)
        current_env.pop("https_proxy", None)

        heter_device_num = 0
        device_list = []
        if fluid.core.is_compiled_with_cuda():
            device_list = get_gpus(args.gpus)
            heter_device_num = len(device_list)
        elif fluid.core.is_compiled_with_xpu():
            heter_device_num = fluid.core.get_xpu_device_count()
            device_list = [str(x) for x in range(0, heter_device_num)]

        for idx, cur_heter_worker in enumerate(pod.heter_workers):
1883 1884
            device_id = "0" if heter_device_num == 0 else str(
                device_list[(idx) % heter_device_num])
1885
            stage_id = cur_heter_worker.stage
1886
            proc_env = {
1887 1888 1889 1890
                "PADDLE_PSERVERS_IP_PORT_LIST":
                self.server_endpoints,
                "PADDLE_TRAINER_ENDPOINTS":
                self.worker_endpoints,
1891 1892 1893 1894 1895 1896
                "PADDLE_NEXT_HETER_TRAINER_IP_PORT_LIST":
                self.stage_heter_map[stage_id + 1]
                if stage_id <= self.stage_num - 1 else "",
                "PADDLE_PREVIOUS_HETER_TRAINER_IP_PORT_LIST":
                self.stage_heter_map[stage_id - 1],
                "PADDLE_ALL_HETER_TRAINER_IP_PORT_LIST":
1897
                self.heter_worker_endpoints,
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
                "HETER_DEVICE_TYPE":
                self.stage_device_map[stage_id],
                "STAGE_ID":
                str(stage_id),
                "STAGE_NUM":
                str(self.stage_num),
                "PADDLE_PORT":
                cur_heter_worker.endpoint.split(":")[1],
                "TRAINING_ROLE":
                "HETER_TRAINER",
                "PADDLE_TRAINERS_NUM":
                str(self.worker_num),
                "PADDLE_STAGE_TRAINERS_NUM":
                str(self.stage_trainer_num),
                "POD_IP":
                cur_heter_worker.endpoint.split(":")[0],
                "PADDLE_WITH_GLOO":
                str(os.getenv("PADDLE_WITH_GLOO", "0")),
                "PADDLE_GLOO_RENDEZVOUS":
                "3",
                "PADDLE_GLOO_FS_PATH":
                self.gloo_rendezvous_dir,
                "FLAGS_selected_gpus":
                "0",
                "FLAGS_selected_xpus":
                "0",
                "CUDA_VISIBLE_DEVICES":
                device_id,
                "XPU_VISIBLE_DEVICES":
                device_id,
                "PADDLE_GLOO_HTTP_ENDPOINT":
                self.http_port
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
            }
            current_env.update(proc_env)

            cmd = [sys.executable, "-u", args.training_script
                   ] + args.training_script_args
            self.cmds["heter_worker"].append(cmd)

            if idx == 0:
                logger.info(
                    "Local heter_worker start {} processes. First process distributed "
                    "environment info (Only For Debug): {}".format(
                        len(pod.heter_workers),
1942 1943
                        pretty_print_envs(proc_env,
                                          ("Distributed Envs", "Value"))))
1944 1945 1946 1947 1948

            if args.log_dir is not None:
                os.system("mkdir -p {}".format(args.log_dir))
                fn = open("%s/heterlog.%d" % (args.log_dir, idx), "w")
                self.log_fns["heter_worker"].append(fn)
1949 1950 1951 1952
                proc = subprocess.Popen(cmd,
                                        env=current_env,
                                        stdout=fn,
                                        stderr=fn)
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
            else:
                proc = subprocess.Popen(cmd, env=current_env)

            tp = TrainerProc()
            tp.proc = proc
            tp.rank = cur_heter_worker.rank
            tp.local_rank = idx
            tp.log_fn = fn
            tp.log_offset = fn.tell() if fn else None
            tp.cmd = cmd

            self.procs["heter_worker"].append(tp)
X
xiongkun 已提交
1965 1966 1967


def check_backend(backend):
1968 1969 1970 1971 1972 1973 1974 1975
    if backend not in [
            'nccl', 'gloo', 'bkcl', 'cncl', 'auto', 'hccl', 'heter', 'xccl'
    ]:
        raise ValueError(
            "paddle.distributed initialize error, "
            "backend argument can only be one of "
            "'nccl', 'gloo', 'bkcl', 'auto', 'hccl', 'heter', 'xccl' "
            "but got %s" % backend)
X
xiongkun 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

    if backend == 'nccl' and not fluid.core.is_compiled_with_cuda():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with cuda but you assign 'nccl' as backend."
        )

    if backend == 'bkcl' and not fluid.core.is_compiled_with_xpu():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with xpu but you assign 'bkcl' as backend."
        )

K
kuizhiqing 已提交
1989 1990 1991 1992 1993 1994
    if backend == 'hccl' and not fluid.core.is_compiled_with_npu():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with npu but you assign 'hccl' as backend."
        )

Z
zn 已提交
1995 1996 1997 1998 1999 2000
    if backend == 'cncl' and not fluid.core.is_compiled_with_mlu():
        raise ValueError(
            "paddle.distributed initialize error, "
            "your paddle is not compiled with mlu but you assign 'cncl' as backend."
        )

X
xiongkun 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

def block_windows_and_macos(backend):
    if backend != 'gloo': return
    if utils.OS_NAME.startswith('darwin'):  # MACOS , block
        raise ValueError(
            "You are going to using gloo on macos, but currently is not supported"
        )
    if utils.IS_WINDOWS:  # MACOS , block
        raise ValueError(
            "You are going to using gloo on windows, but currently is not supported"
        )


def get_backend_by_compile_flag():
    if fluid.core.is_compiled_with_cuda():
        return 'nccl'

    if fluid.core.is_compiled_with_xpu():
        return 'bkcl'

K
kuizhiqing 已提交
2021 2022 2023
    if fluid.core.is_compiled_with_npu():
        return 'hccl'

Z
zn 已提交
2024 2025 2026
    if fluid.core.is_compiled_with_mlu():
        return 'cncl'

X
xiongkun 已提交
2027
    return 'gloo'