test_activation_op.py 51.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
Q
qijun 已提交
20
from op_test import OpTest
C
Clementine 已提交
21
from scipy.special import expit, erf
22
import paddle
23
import paddle.fluid as fluid
24
import paddle.nn as nn
25
import paddle.nn.functional as F
26
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
27 28


29
class TestSqrtOpError(unittest.TestCase):
Z
Zhaolong Xing 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sqrt op must be Variable or numpy.ndarray.
            in1 = 1
            self.assertRaises(TypeError, fluid.layers.sqrt, in1)
            # The input dtype of sqrt op must be float16, float32, float64.
            in2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.sqrt, in2)

            in3 = fluid.layers.data(
                name='input3', shape=[12, 10], dtype="float16")
            fluid.layers.sqrt(x=in3)


C
chengduo 已提交
45
class TestActivation(OpTest):
Q
qijun 已提交
46 47
    def setUp(self):
        self.op_type = "exp"
48
        self.init_dtype()
49
        self.init_kernel_type()
50 51 52 53 54 55

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.exp(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
56 57 58 59 60

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
61 62
        if self.dtype == np.float16:
            return
63
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
64

65
    def init_dtype(self):
66
        self.dtype = np.float64
67

68 69 70
    def init_kernel_type(self):
        pass

Q
qijun 已提交
71

72 73 74
class TestParameter(object):
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
W
WuHaobo 已提交
75
            np_x = np.array([0.1])
76
            data = fluid.layers.data(name="X", shape=[1])
W
WuHaobo 已提交
77
            out = eval("paddle.%s(data, name='Y')" % self.op_type)
78 79
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
W
WuHaobo 已提交
80 81 82
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(result, expected)
83 84 85 86 87 88 89 90 91 92

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = eval("paddle.%s(x).numpy()" % self.op_type)
            z_expected = eval("np.%s(np_x)" % self.op_type)
            self.assertEqual(z, z_expected)


C
chengduo 已提交
93
class TestSigmoid(TestActivation):
Q
qijun 已提交
94 95
    def setUp(self):
        self.op_type = "sigmoid"
96 97 98 99 100 101 102
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = 1 / (1 + np.exp(-x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
103

104 105 106
    def init_dtype(self):
        self.dtype = np.float32

107
    def test_check_grad(self):
108 109 110 111
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.01)

112

C
chengduo 已提交
113
class TestLogSigmoid(TestActivation):
114 115
    def setUp(self):
        self.op_type = "logsigmoid"
116 117 118 119 120 121 122
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 / (1 + np.exp(-x)))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
123 124

    def test_check_grad(self):
125 126
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
127
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
128 129


130
class TestTanh(TestActivation, TestParameter):
131 132
    def setUp(self):
        self.op_type = "tanh"
133 134 135 136 137 138
        self.init_dtype()
        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
139 140

    def test_check_grad(self):
141 142
        if self.dtype == np.float16:
            return
143
        self.check_grad(['X'], 'Out')
144

145 146 147 148 149 150
    def init_dtype(self):
        #TODO If dtype is float64, the output (Out) has diff at CPUPlace
        # when using and not using inplace. Therefore, set dtype as float32
        # for now.
        self.dtype = np.float32

151

152
class TestAtan(TestActivation, TestParameter):
153 154 155 156 157 158 159 160 161 162 163 164 165
    def setUp(self):
        self.op_type = "atan"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.arctan(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
166
        self.check_grad(['X'], 'Out')
167

W
WuHaobo 已提交
168 169 170 171 172 173 174 175 176 177 178
    def test_out_name(self):
        with fluid.program_guard(fluid.Program()):
            np_x = np.array([0.1])
            data = fluid.layers.data(name="X", shape=[1])
            out = paddle.atan(data, name='Y')
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(feed={"X": np_x}, fetch_list=[out])
            expected = np.arctan(np_x)
            self.assertEqual(result, expected)

179 180 181 182 183 184 185 186
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = paddle.atan(x).numpy()
            z_expected = np.arctan(np_x)
            self.assertEqual(z, z_expected)

187

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
class TestSinh(TestActivation):
    def setUp(self):
        self.op_type = "sinh"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sinh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.sinh(x).numpy()
            z_expected = np.sinh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_sinh_out = fluid.layers.sinh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_sinh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_sinh_out])

        expected_res = np.sinh(input_x)
        self.assertTrue(np.allclose(np_sinh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.sinh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestSinhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.sinh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.sinh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.sinh(x_fp16)


class TestCosh(TestActivation):
    def setUp(self):
        self.op_type = "cosh"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.cosh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([0.1])
            x = fluid.dygraph.to_variable(np_x)
            z = fluid.layers.cosh(x).numpy()
            z_expected = np.cosh(np_x)
            self.assertTrue(np.allclose(z, z_expected))

    def test_api(self):
        test_data_shape = [11, 17]
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            data_x = fluid.layers.data(
                name="data_x",
                shape=test_data_shape,
                append_batch_size=False,
                dtype="float32")

            pd_cosh_out = paddle.cosh(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            np_cosh_res = exe.run(fluid.default_main_program(),
                                  feed={"data_x": input_x},
                                  fetch_list=[pd_cosh_out])

        expected_res = np.cosh(input_x)
        self.assertTrue(np.allclose(np_cosh_res, expected_res))

    def test_backward(self):
        test_data_shape = [11, 17]
        with fluid.dygraph.guard():
            input_x = np.random.uniform(0.1, 1,
                                        test_data_shape).astype("float32")
            var = fluid.dygraph.to_variable(input_x)
            var.stop_gradient = False
            loss = fluid.layers.cosh(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, input_x.shape)


class TestCoshOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.cosh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.cosh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.cosh(x_fp16)


C
chengduo 已提交
330
class TestTanhShrink(TestActivation):
K
Kavya Srinet 已提交
331 332
    def setUp(self):
        self.op_type = "tanh_shrink"
333 334 335 336 337 338 339
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [10, 17]).astype(self.dtype)
        out = x - np.tanh(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
340 341

    def test_check_grad(self):
342 343
        if self.dtype == np.float16:
            return
344
        self.check_grad(['X'], 'Out')
K
Kavya Srinet 已提交
345

346

347 348 349 350 351 352
def ref_hardshrink(x, threshold):
    out = np.copy(x)
    out[(out >= -threshold) & (out <= threshold)] = 0
    return out


C
chengduo 已提交
353
class TestHardShrink(TestActivation):
354 355
    def setUp(self):
        self.op_type = "hard_shrink"
356 357
        self.init_dtype()

358
        threshold = 0.5
Z
zhupengyang 已提交
359
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype) * 10
360
        out = ref_hardshrink(x, threshold)
361

362 363
        self.attrs = {'threshold': threshold}
        self.inputs = {'X': x}
364
        self.outputs = {'Out': out}
365 366

    def test_check_grad(self):
367 368
        if self.dtype == np.float16:
            return
369
        self.check_grad(['X'], 'Out')
370 371


372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
class TestHardShrinkAPI(unittest.TestCase):
    # test paddle.nn.Hardshrink, paddle.nn.functional.hardshrink
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', [10, 12])
            out1 = F.hardshrink(x)
            hd = paddle.nn.Hardshrink()
            out2 = hd(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_variable(self.x_np)
        out1 = F.hardshrink(x)
        hd = paddle.nn.Hardshrink()
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.5)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.hardshrink(x, 0.6)
        hd = paddle.nn.Hardshrink(0.6)
        out2 = hd(x)
        out_ref = ref_hardshrink(self.x_np, 0.6)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', [10, 12])
            out = fluid.layers.hard_shrink(x)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = ref_hardshrink(self.x_np, 0.5)
        self.assertEqual(np.allclose(out_ref, res[0]), True)

418
    def test_errors(self):
419
        with paddle.static.program_guard(paddle.static.Program()):
420
            # The input type must be Variable.
421
            self.assertRaises(TypeError, F.hardshrink, 1)
422
            # The input dtype must be float16, float32, float64.
423 424
            x_int32 = paddle.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, F.hardshrink, x_int32)
425
            # support the input dtype is float16
426 427
            x_fp16 = paddle.data(name='x_fp16', shape=[12, 10], dtype='float16')
            F.hardshrink(x_fp16)
428 429


C
chengduo 已提交
430
class TestSoftShrink(TestActivation):
431 432
    def setUp(self):
        self.op_type = "softshrink"
433 434
        self.init_dtype()

435
        lambda_val = 0.1
Z
zhupengyang 已提交
436
        x = np.random.uniform(0.25, 10, [10, 12]).astype(self.dtype)
437 438 439 440
        out = np.copy(x)
        out = (out < -lambda_val) * (out + lambda_val) + (out > lambda_val) * (
            out - lambda_val)

441
        self.attrs = {'lambda': lambda_val}
442 443
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
444 445

    def test_check_grad(self):
446 447
        if self.dtype == np.float16:
            return
448
        self.check_grad(['X'], 'Out')
449

450

451 452 453 454 455 456 457 458 459 460 461 462 463
class TestSoftShrinkOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.softshrink, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.softshrink, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.softshrink(x_fp16)


464
class TestSqrt(TestActivation, TestParameter):
465 466
    def setUp(self):
        self.op_type = "sqrt"
467 468 469 470 471 472 473
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
474 475

    def test_check_grad(self):
476 477
        if self.dtype == np.float16:
            return
478
        self.check_grad(['X'], 'Out')
479

480

Z
zhoukunsheng 已提交
481 482 483 484 485
class TestRsqrt(TestActivation):
    def setUp(self):
        self.op_type = "rsqrt"
        self.init_dtype()

Z
zhupengyang 已提交
486
        x = np.random.uniform(0.1, 1, [10, 12]).astype(self.dtype) * 10
Z
zhoukunsheng 已提交
487 488 489 490 491 492 493 494 495 496 497
        out = 1.0 / np.sqrt(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out', max_relative_error=0.0005)


C
chengduo 已提交
498
class TestAbs(TestActivation):
499 500
    def setUp(self):
        self.op_type = "abs"
501 502
        self.init_dtype()

503
        x = np.random.uniform(-1, 1, [4, 25]).astype(self.dtype)
C
chengduo 已提交
504
        # Because we set delta = 0.005 in calculating numeric gradient,
Q
qijun 已提交
505
        # if x is too small, such as 0.002, x_neg will be -0.003
C
chengduo 已提交
506
        # x_pos will be 0.007, so the numeric gradient is inaccurate.
Q
qijun 已提交
507 508
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
509 510 511 512
        out = np.abs(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
513 514

    def test_check_grad(self):
515 516
        if self.dtype == np.float16:
            return
517
        self.check_grad(['X'], 'Out')
518

519

C
chengduo 已提交
520
class TestCeil(TestActivation):
D
dzhwinter 已提交
521 522
    def setUp(self):
        self.op_type = "ceil"
523 524
        self.init_dtype()

Z
zhupengyang 已提交
525
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
526 527 528 529
        out = np.ceil(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
530

D
dzhwinter 已提交
531
    # The same reason with TestFloor
C
chengduo 已提交
532
    def test_check_grad(self):
533 534 535
        pass


C
chengduo 已提交
536
class TestFloor(TestActivation):
D
dzhwinter 已提交
537 538
    def setUp(self):
        self.op_type = "floor"
539 540
        self.init_dtype()

Z
zhupengyang 已提交
541
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
542 543 544 545
        out = np.floor(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
546

D
dzhwinter 已提交
547
    # the gradient on floor, ceil, round is undefined.
548
    # we return zero as gradient, but the numpy return nan
C
chengduo 已提交
549 550
    # The same reason with TestFloor
    def test_check_grad(self):
551 552 553
        pass


C
chengduo 已提交
554
class TestCos(TestActivation):
C
add cos  
chengduoZH 已提交
555 556
    def setUp(self):
        self.op_type = "cos"
557 558
        self.init_dtype()

Z
zhupengyang 已提交
559
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
560 561 562 563
        out = np.cos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add sin  
chengduoZH 已提交
564 565

    def test_check_grad(self):
566 567
        if self.dtype == np.float16:
            return
568
        self.check_grad(['X'], 'Out')
C
add sin  
chengduoZH 已提交
569

570

571 572 573 574 575
class TestAcos(TestActivation):
    def setUp(self):
        self.op_type = "acos"
        self.init_dtype()

Z
zhupengyang 已提交
576
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
577 578 579 580 581 582 583 584
        out = np.arccos(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
585
        self.check_grad(['X'], 'Out')
586 587


588
class TestSin(TestActivation, TestParameter):
C
add sin  
chengduoZH 已提交
589 590
    def setUp(self):
        self.op_type = "sin"
591 592
        self.init_dtype()

Z
zhupengyang 已提交
593
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
594 595 596 597
        out = np.sin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
C
add cos  
chengduoZH 已提交
598 599

    def test_check_grad(self):
600 601
        if self.dtype == np.float16:
            return
602
        self.check_grad(['X'], 'Out')
C
add cos  
chengduoZH 已提交
603 604


605 606 607 608 609
class TestAsin(TestActivation):
    def setUp(self):
        self.op_type = "asin"
        self.init_dtype()

Z
zhupengyang 已提交
610
        x = np.random.uniform(-0.95, 0.95, [10, 12]).astype(self.dtype)
611 612 613 614 615 616 617 618
        out = np.arcsin(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
619
        self.check_grad(['X'], 'Out')
620 621


C
chengduo 已提交
622
class TestRound(TestActivation):
D
dzhwinter 已提交
623 624
    def setUp(self):
        self.op_type = "round"
625 626
        self.init_dtype()

Z
zhupengyang 已提交
627
        x = np.random.uniform(-1, 1, [10, 12]).astype(self.dtype)
628 629 630 631
        out = np.round(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
D
dzhwinter 已提交
632

C
chengduo 已提交
633
    def test_check_grad(self):
634 635 636
        pass


C
chengduo 已提交
637
class TestRelu(TestActivation):
638
    def setUp(self):
Q
qijun 已提交
639
        self.op_type = "relu"
K
Kexin Zhao 已提交
640 641 642
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
Q
qijun 已提交
643 644
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
K
Kexin Zhao 已提交
645 646 647 648
        out = np.maximum(x, 0)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
649 650

    def test_check_grad(self):
K
Kexin Zhao 已提交
651 652
        if self.dtype == np.float16:
            return
653
        self.check_grad(['X'], 'Out')
A
Adam 已提交
654 655


656 657 658 659
class TestReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
660
            self.assertRaises(TypeError, fluid.layers.relu, 1)
661 662 663 664 665 666 667 668 669
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.relu(x_fp16)


A
Adam 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
class TestLeakyRelu(TestActivation):
    def setUp(self):
        self.op_type = "leaky_relu"
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        out = np.maximum(x, 0.02 * x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
686
        self.check_grad(['X'], 'Out')
687 688


689 690 691 692 693 694 695 696 697 698 699 700 701 702
class TestLeakyReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.leaky_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.leaky_relu, x_int32)
            # support the input dtype is float32
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float32')
            fluid.layers.leaky_relu(x_fp16)


703 704 705 706 707 708 709 710 711 712
def gelu(x, approximate):
    if approximate:
        y_ref = 0.5 * x * (1.0 + np.tanh(
            np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
    else:
        y_ref = 0.5 * x * (1 + erf(x / np.sqrt(2)))
    return y_ref.astype(x.dtype)


class TestGeluApproximate(TestActivation):
C
Clementine 已提交
713 714 715
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
716 717 718
        approximate = True
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = gelu(x, approximate)
C
Clementine 已提交
719

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
        self.attrs = {"approximate": approximate}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')


class TestGelu(TestActivation):
    def setUp(self):
        self.op_type = "gelu"
        self.init_dtype()
        approximate = False
C
Clementine 已提交
735
        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
736
        out = gelu(x, approximate)
C
Clementine 已提交
737 738 739

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
740
        self.attrs = {"approximate": approximate}
C
Clementine 已提交
741 742 743 744

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
745
        self.check_grad(['X'], 'Out')
C
Clementine 已提交
746 747


C
chengduo 已提交
748
class TestBRelu(TestActivation):
749 750
    def setUp(self):
        self.op_type = "brelu"
751 752
        self.init_dtype()

Z
zhupengyang 已提交
753
        x = np.random.uniform(-5, 10, [10, 12]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
754 755
        t_min = 1.0
        t_max = 4.0
Q
qijun 已提交
756 757
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
758
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
759 760 761
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
762 763 764

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'t_min': t_min, 't_max': t_max}
F
fengjiayi 已提交
765
        self.outputs = {'Out': t}
766 767

    def test_check_grad(self):
768 769
        if self.dtype == np.float16:
            return
770
        self.check_grad(['X'], 'Out')
771

772

773 774 775 776 777 778 779 780 781 782 783 784 785 786
class TestBReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.brelu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.brelu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.layers.data(
                name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.brelu(x_fp16)


C
chengduo 已提交
787
class TestRelu6(TestActivation):
K
Kavya Srinet 已提交
788
    def setUp(self):
789
        self.op_type = "relu6"
790 791
        self.init_dtype()

Z
zhupengyang 已提交
792
        x = np.random.uniform(-1, 10, [10, 12]).astype(self.dtype)
793 794 795 796
        threshold = 6.0
        # The same with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
797
        out = np.minimum(np.maximum(x, 0), threshold)
798

799
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
800
        self.attrs = {'threshold': threshold}
801
        self.outputs = {'Out': out}
K
Kavya Srinet 已提交
802

803 804 805
    def test_check_grad(self):
        if self.dtype == np.float16:
            return
806
        self.check_grad(['X'], 'Out')
807 808


809 810 811 812 813 814 815 816 817 818 819 820 821
class TestRelu6OpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.relu6, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.relu6, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.relu6(x_fp16)


H
huangjun12 已提交
822 823 824 825 826
class TestHardSwish(TestActivation):
    def setUp(self):
        self.op_type = 'hard_swish'
        self.init_dtype()

Z
zhupengyang 已提交
827
        x = np.random.uniform(-6, 6, [10, 12]).astype(self.dtype)
H
huangjun12 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
        threshold = 6.0
        scale = 6.0
        offset = 3.0
        #the same with TestAbs
        x[np.abs(x + offset) < 0.005] = 0.02
        x[np.abs(x - threshold + offset) < 0.005] = threshold - offset + 0.02
        out = x * np.minimum(np.maximum(x + offset, 0), threshold) / scale

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold, 'scale': scale, 'offset': offset}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
843
        self.check_grad(['X'], 'Out')
H
huangjun12 已提交
844 845


846 847 848 849 850 851 852 853 854 855 856 857 858
class TestHardSwishOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_swish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_swish, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_swish(x_fp16)


C
chengduo 已提交
859
class TestSoftRelu(TestActivation):
860 861
    def setUp(self):
        self.op_type = "soft_relu"
862 863 864
        self.init_dtype()

        x = np.random.uniform(-3, 3, [4, 4]).astype(self.dtype)
Y
Yang Yang(Tony) 已提交
865
        threshold = 2.0
Q
qijun 已提交
866 867
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
Z
zhupengyang 已提交
868
        x[np.abs(x + threshold) < 0.005] = -threshold - 0.02
869 870 871
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
872 873 874 875 876
        out = np.log((np.exp(t) + 1))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.attrs = {'threshold': threshold}
        self.outputs = {'Out': out}
877 878

    def test_check_grad(self):
879 880
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
881
        self.check_grad(['X'], 'Out', max_relative_error=0.02)
882

883

884 885 886 887 888 889 890 891 892 893 894 895 896
class TestSoftReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.soft_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.soft_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.soft_relu(x_fp16)


C
chengduo 已提交
897
class TestELU(TestActivation):
898 899
    def setUp(self):
        self.op_type = "elu"
900 901
        self.init_dtype()

Z
zhupengyang 已提交
902
        x = np.random.uniform(-3, 3, [10, 12]).astype(self.dtype)
903
        alpha = 1.
904
        out = np.maximum(0, x) + np.minimum(0, alpha * (np.exp(x) - 1))
905 906 907 908
        # Note: unlike other Relu extensions, point 0 on standard ELU function (i.e. alpha = 1)
        # is differentiable, so we can skip modifications like x[np.abs(x) < 0.005] = 0.02 here
        self.inputs = {'X': x}
        self.attrs = {'alpha': alpha}
909
        self.outputs = {'Out': out}
910 911

    def test_check_grad(self):
912 913
        if self.dtype == np.float16:
            return
914
        self.check_grad(['X'], 'Out')
915 916


917
class TestELUOpError(unittest.TestCase):
918 919 920 921 922 923 924 925 926 927 928
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of elu_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.elu, x1)
            # The input dtype of elu_op must be float16 float32 or float64.
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.elu, x2)


C
chengduo 已提交
929
class TestReciprocal(TestActivation):
Q
qijun 已提交
930 931
    def setUp(self):
        self.op_type = "reciprocal"
932 933 934 935 936 937 938
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.reciprocal(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
939 940

    def test_check_grad(self):
941 942
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
943
        self.check_grad(['X'], 'Out', max_relative_error=0.01)
Q
qijun 已提交
944 945


C
chengduo 已提交
946
class TestLog(TestActivation):
Q
qijun 已提交
947 948
    def setUp(self):
        self.op_type = "log"
949 950 951 952 953 954 955
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
956 957

    def test_check_grad(self):
958 959
        if self.dtype == np.float16:
            return
960
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
961

962 963 964 965 966 967 968 969 970
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")

        self.assertRaises(TypeError, fluid.layers.log, in1)
        self.assertRaises(TypeError, fluid.layers.log, in2)

971

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
class TestLog1p(TestActivation):
    def setUp(self):
        self.op_type = "log1p"
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.log1p(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        self.check_grad(['X'], 'Out')

    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.layers.data(
                name="data_x",
                shape=[11, 17],
                append_batch_size=False,
                dtype="float64")

            out1 = paddle.log1p(data_x)
            exe = fluid.Executor(place=fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
1000 1001 1002
            res1 = exe.run(fluid.default_main_program(),
                           feed={"data_x": input_x},
                           fetch_list=[out1])
1003
        expected_res = np.log1p(input_x)
1004
        self.assertTrue(np.allclose(res1, expected_res))
1005 1006 1007 1008 1009 1010 1011 1012

        # dygraph
        with fluid.dygraph.guard():
            np_x = np.random.uniform(0.1, 1, [11, 17]).astype("float64")
            data_x = fluid.dygraph.to_variable(np_x)
            z = paddle.log1p(data_x)
            np_z = z.numpy()
            z_expected = np.array(np.log1p(np_x))
1013
        self.assertTrue(np.allclose(np_z, z_expected))
1014 1015


C
chengduo 已提交
1016
class TestSquare(TestActivation):
Q
qijun 已提交
1017 1018
    def setUp(self):
        self.op_type = "square"
1019 1020 1021 1022 1023 1024 1025
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        out = np.square(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
Q
qijun 已提交
1026 1027

    def test_check_grad(self):
1028 1029
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1030
        self.check_grad(['X'], 'Out', max_relative_error=0.007)
Q
qijun 已提交
1031

1032

C
chengduo 已提交
1033
class TestPow(TestActivation):
1034 1035
    def setUp(self):
        self.op_type = "pow"
1036 1037 1038 1039 1040 1041
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
Y
Yang Yang(Tony) 已提交
1042
        self.attrs = {'factor': 3.0}
1043
        self.outputs = {'Out': out}
1044 1045

    def test_check_grad(self):
1046 1047
        if self.dtype == np.float16:
            return
1048
        self.check_grad(['X'], 'Out')
1049

1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
class TestPow_factor_tensor(TestActivation):
    def setUp(self):
        self.op_type = "pow"
        self.init_dtype()

        x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
        out = np.power(x, 3)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(x),
            'FactorTensor': np.array([3.0]).astype("float32")
        }

        self.attrs = {}
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
1073
        self.check_grad(['X'], 'Out')
1074 1075 1076 1077 1078

    def test_api(self):
        input = np.random.uniform(1, 2, [11, 17]).astype("float32")
        x = fluid.layers.data(
            name="x", shape=[11, 17], append_batch_size=False, dtype="float32")
1079 1080 1081 1082 1083
        res = fluid.layers.data(
            name="res",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
1084 1085 1086 1087 1088

        factor_1 = 2.0
        factor_2 = fluid.layers.fill_constant([1], "float32", 3.0)
        out_1 = fluid.layers.pow(x, factor=factor_1)
        out_2 = fluid.layers.pow(x, factor=factor_2)
1089 1090 1091
        out_4 = paddle.pow(x, factor_1, name='pow_res')
        out_6 = paddle.pow(x, factor_2)
        self.assertEqual(('pow_res' in out_4.name), True)
1092 1093

        exe = fluid.Executor(place=fluid.CPUPlace())
W
WuHaobo 已提交
1094
        res_1, res_2, res, res_6 = exe.run(
1095 1096
            fluid.default_main_program(),
            feed={"x": input},
W
WuHaobo 已提交
1097
            fetch_list=[out_1, out_2, res, out_6])
1098 1099 1100

        assert np.array_equal(res_1, np.power(input, 2))
        assert np.array_equal(res_2, np.power(input, 3))
1101
        assert np.array_equal(res_6, np.power(input, 3))
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    def test_error(self):
        in1 = fluid.layers.data(
            name="in1", shape=[11, 17], append_batch_size=False, dtype="int32")
        in2 = fluid.layers.data(
            name="in2", shape=[11, 17], append_batch_size=False, dtype="int64")
        in3 = fluid.layers.data(
            name="in3",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float32")
        in4 = fluid.layers.data(
            name="in4",
            shape=[11, 17],
            append_batch_size=False,
            dtype="float64")

        factor_1 = fluid.layers.fill_constant([1], "float64", 3.0)

        self.assertRaises(TypeError, fluid.layers.pow, x=in1, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in2, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in3, factor=factor_1)
        self.assertRaises(TypeError, fluid.layers.pow, x=in4, factor=factor_1)

1126

C
chengduo 已提交
1127
class TestSTanh(TestActivation):
1128 1129
    def setUp(self):
        self.op_type = "stanh"
1130 1131 1132
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
1133 1134
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
1135 1136 1137
        out = scale_b * np.tanh(x * scale_a)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
1138
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
1139
        self.outputs = {'Out': out}
1140

Q
qijun 已提交
1141
    def test_check_grad(self):
1142 1143
        if self.dtype == np.float16:
            return
1144
        self.check_grad(['X'], 'Out')
Q
qijun 已提交
1145

1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
class TestSTanhOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.stanh, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.stanh, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.stanh(x_fp16)


C
chengduo 已提交
1160
class TestSoftplus(TestActivation):
K
kexinzhao 已提交
1161 1162
    def setUp(self):
        self.op_type = "softplus"
1163
        self.init_dtype()
C
chengduo 已提交
1164
        self.dtype = np.float64
1165 1166 1167 1168 1169 1170

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.log(1 + np.exp(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
K
kexinzhao 已提交
1171 1172

    def test_check_grad(self):
1173 1174
        if self.dtype == np.float16:
            return
1175
        self.check_grad(['X'], 'Out')
K
kexinzhao 已提交
1176

1177

C
chengduo 已提交
1178
class TestSoftsign(TestActivation):
1179 1180
    def setUp(self):
        self.op_type = "softsign"
1181 1182 1183 1184 1185 1186 1187
        self.init_dtype()

        x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
        out = np.divide(x, 1 + np.abs(x))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
1188 1189

    def test_check_grad(self):
1190 1191
        if self.dtype == np.float16:
            return
1192
        self.check_grad(['X'], 'Out')
1193 1194


C
chengduo 已提交
1195
class TestThresholdedRelu(TestActivation):
1196 1197
    def setUp(self):
        self.op_type = "thresholded_relu"
1198 1199
        self.init_dtype()

1200
        threshold = 0.25
Z
zhupengyang 已提交
1201
        self.delta = 0.005
1202
        X = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
1203 1204

        # Same reason as TestAbs
Z
zhupengyang 已提交
1205
        X[np.abs(X - threshold) < self.delta] = threshold + 0.2
1206
        out = (X > threshold) * X
1207

1208
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
1209
        self.attrs = {'threshold': threshold}
1210
        self.outputs = {'Out': out}
1211 1212

    def test_check_grad(self):
1213 1214
        if self.dtype == np.float16:
            return
1215
        self.check_grad(['X'], 'Out')
1216 1217


1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
class TestThresholdedReluOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.thresholded_relu, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.thresholded_relu, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.thresholded_relu(x_fp16)


C
chengduo 已提交
1231
class TestHardSigmoid(TestActivation):
1232 1233
    def setUp(self):
        self.op_type = "hard_sigmoid"
1234 1235
        self.init_dtype()

Z
zhupengyang 已提交
1236
        X = np.random.uniform(-5, 5, [10, 12]).astype("float32")
1237 1238 1239 1240 1241
        slope = 0.2
        offset = 0.5
        lower_threshold = -offset / slope
        upper_threshold = (1 - offset) / slope

Z
zhupengyang 已提交
1242 1243
        self.delta = 0.005

1244
        # Same reason as TestAbs
Z
zhupengyang 已提交
1245 1246
        X[(X - lower_threshold) < self.delta] = lower_threshold - 0.02
        X[(X - upper_threshold) < self.delta] = upper_threshold + 0.02
1247 1248

        temp = X * slope + offset
1249 1250 1251 1252
        out = np.maximum(0.0, np.minimum(1.0, temp))

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.outputs = {'Out': out}
1253 1254

    def test_check_grad(self):
1255 1256
        if self.dtype == np.float16:
            return
Z
zhupengyang 已提交
1257
        self.check_grad(['X'], 'Out')
1258

1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
class TestHardSigmoidOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hard_sigmoid, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hard_sigmoid, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.hard_sigmoid(x_fp16)


C
chengduo 已提交
1273
class TestSwish(TestActivation):
A
Abhinav Arora 已提交
1274 1275
    def setUp(self):
        self.op_type = "swish"
1276 1277 1278 1279 1280 1281 1282 1283 1284
        self.init_dtype()

        X = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        beta = 2.3
        out = X * expit(beta * X)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(X)}
        self.attrs = {'beta': beta}
        self.outputs = {'Out': out}
A
Abhinav Arora 已提交
1285 1286

    def test_check_grad(self):
1287 1288
        if self.dtype == np.float16:
            return
F
fengjiayi 已提交
1289
        self.check_grad(['X'], 'Out', max_relative_error=0.008)
A
Abhinav Arora 已提交
1290

1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
class TestSwishOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.swish, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[12, 10], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.swish, x_int32)
            # support the input dtype is float16
            x_fp16 = fluid.data(name='x_fp16', shape=[12, 10], dtype='float16')
            fluid.layers.swish(x_fp16)


1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
#------------------ Test Error Activation----------------------
def create_test_error_class(op_type):
    class TestOpErrors(unittest.TestCase):
        def test_errors(self):
            with program_guard(Program(), Program()):
                op = getattr(fluid.layers, op_type)
                # The input dtype of op_type must be float32, float64.
                in1 = fluid.layers.data(
                    name='input2', shape=[12, 10], dtype="int32")
                in2 = fluid.layers.data(
                    name='input3', shape=[12, 10], dtype="int64")
                self.assertRaises(TypeError, op, in1)
                self.assertRaises(TypeError, op, in2)

    cls_name = "{0}_{1}".format(op_type, "test_errors")
    TestOpErrors.__name__ = cls_name
    globals()[cls_name] = TestOpErrors


create_test_error_class('acos')
create_test_error_class('asin')
create_test_error_class('atan')
create_test_error_class('ceil')
create_test_error_class('cos')
create_test_error_class('floor')
create_test_error_class('reciprocal')
create_test_error_class('round')
create_test_error_class('rsqrt')
create_test_error_class('sin')
create_test_error_class('sqrt')
create_test_error_class('tanh')


1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
#------------------ Test Cudnn Activation----------------------
def create_test_act_cudnn_class(parent, atol=1e-3, grad_atol=1e-3):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActCudnn(parent):
        def init_kernel_type(self):
            self.attrs = {"use_cudnn": True}

    cls_name = "{0}_{1}".format(parent.__name__, "cudnn")
    TestActCudnn.__name__ = cls_name
    globals()[cls_name] = TestActCudnn


create_test_act_cudnn_class(TestRelu)
create_test_act_cudnn_class(TestRelu6)
create_test_act_cudnn_class(TestSigmoid)
create_test_act_cudnn_class(TestTanh)


C
chengduo 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
#------------------ Test Fp16 ----------------------
def create_test_act_fp16_class(parent,
                               atol=1e-3,
                               grad_check=True,
                               grad_atol=0.80):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestActFp16(parent):
        def init_dtype(self):
            self.dtype = np.float16
1367

C
chengduo 已提交
1368
        def test_check_output(self):
1369
            place = core.CUDAPlace(0)
C
chengduo 已提交
1370 1371 1372
            support_fp16 = core.is_float16_supported(place)
            if support_fp16:
                self.check_output_with_place(place, atol=atol)
1373

C
chengduo 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
        def test_check_grad(self):
            place = core.CUDAPlace(0)
            support_fp16 = core.is_float16_supported(place)
            if support_fp16 and grad_check:
                self.check_grad_with_place(
                    place, ['X'], 'Out', max_relative_error=grad_atol)

    cls_name = "{0}_{1}".format(parent.__name__, "fp16")
    TestActFp16.__name__ = cls_name
    globals()[cls_name] = TestActFp16


create_test_act_fp16_class(TestActivation)
create_test_act_fp16_class(TestSigmoid)
create_test_act_fp16_class(TestLogSigmoid)
create_test_act_fp16_class(TestTanh)
create_test_act_fp16_class(TestTanhShrink)
create_test_act_fp16_class(TestHardShrink)
create_test_act_fp16_class(TestSoftShrink)
create_test_act_fp16_class(TestSqrt)
create_test_act_fp16_class(TestAbs)
create_test_act_fp16_class(TestCeil, grad_check=False)
create_test_act_fp16_class(TestFloor, grad_check=False)
create_test_act_fp16_class(TestCos, grad_atol=0.85)
1398
create_test_act_fp16_class(TestCosh, grad_atol=0.85)
1399
create_test_act_fp16_class(TestAcos, grad_atol=0.85)
C
chengduo 已提交
1400
create_test_act_fp16_class(TestSin)
1401
create_test_act_fp16_class(TestSinh)
1402 1403
create_test_act_fp16_class(TestAsin)
create_test_act_fp16_class(TestAtan)
C
chengduo 已提交
1404 1405
create_test_act_fp16_class(TestRound, grad_check=False)
create_test_act_fp16_class(TestRelu)
C
Clementine 已提交
1406
create_test_act_fp16_class(TestGelu)
C
chengduo 已提交
1407 1408 1409 1410 1411 1412
create_test_act_fp16_class(TestBRelu)
create_test_act_fp16_class(TestRelu6)
create_test_act_fp16_class(TestSoftRelu)
create_test_act_fp16_class(TestELU)
create_test_act_fp16_class(TestReciprocal)
create_test_act_fp16_class(TestLog)
1413
create_test_act_fp16_class(TestLog1p, grad_atol=0.9)
C
chengduo 已提交
1414 1415
create_test_act_fp16_class(TestSquare)
create_test_act_fp16_class(TestPow, atol=5e-2)
1416
create_test_act_fp16_class(TestPow_factor_tensor, atol=5e-2)
C
chengduo 已提交
1417 1418 1419 1420 1421 1422
create_test_act_fp16_class(TestSTanh, grad_atol=0.9)
create_test_act_fp16_class(TestSoftplus)
create_test_act_fp16_class(TestSoftsign)
create_test_act_fp16_class(TestThresholdedRelu)
create_test_act_fp16_class(TestHardSigmoid)
create_test_act_fp16_class(TestSwish)
H
huangjun12 已提交
1423
create_test_act_fp16_class(TestHardSwish)
A
Abhinav Arora 已提交
1424

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

class TestNNReluAPI(unittest.TestCase):
    def setUp(self):
        self.init_data()

    def init_data(self):
        self.x_shape = [10, 12]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.y = self.ref_forward(self.x)

    def ref_forward(self, x):
        return np.maximum(x, 0)

    def ref_backward(self, y, dy):
        y_t = y.copy()
        y_t[y_t > 0] = 1
        return y_t * dy

    def check_api(self, place=fluid.CPUPlace(), inplace=False):
        main_program = Program()
        myrelu = nn.ReLU(inplace)
        with fluid.program_guard(main_program):
            x = fluid.data(name='x', shape=self.x_shape)
            x.stop_gradient = False
            y = myrelu(x)
            fluid.backward.append_backward(fluid.layers.mean(y))
        exe = fluid.Executor(place)
        out = exe.run(main_program,
                      feed={'x': self.x},
                      fetch_list=[y, y.grad_name, x.grad_name])
        self.assertTrue(np.allclose(out[0], self.y))
        self.assertTrue(np.allclose(out[2], self.ref_backward(self.y, out[1])))

        with fluid.dygraph.guard(place):
            x = fluid.dygraph.to_variable(self.x)
            y = myrelu(x)
        self.assertTrue(np.allclose(y.numpy(), self.y))

    def test_check_api(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            for inplace in [True, False]:
                self.check_api(place, inplace)


class TestNNFunctionalReluAPI(unittest.TestCase):
    def setUp(self):
        self.init_data()

    def init_data(self):
        self.x_shape = [10, 12]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.y = self.ref_forward(self.x)

    def ref_forward(self, x):
        return np.maximum(x, 0)

    def test_check_api(self):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.data(name='x', shape=self.x_shape)
1488
            y = F.relu(x)
1489 1490 1491 1492 1493
        exe = fluid.Executor(fluid.CPUPlace())
        out = exe.run(main_program, feed={'x': self.x}, fetch_list=[y])
        self.assertTrue(np.allclose(out[0], self.y))


1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
class TestNNSigmoidAPI(unittest.TestCase):
    def setUp(self):
        self.init_data()

    def init_data(self):
        self.x_shape = [10, 15]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.y = self.ref_forward(self.x)

    def ref_forward(self, x):
        return 1 / (1 + np.exp(-x))

    def ref_backward(self, y, dy):
        return dy * y * (1 - y)

    def check_api(self, place=fluid.CPUPlace(), inplace=False):
        main_program = Program()
        mysigmoid = nn.Sigmoid(inplace)
        with fluid.program_guard(main_program):
            x = fluid.data(name='x', shape=self.x_shape)
            x.stop_gradient = False
            y = mysigmoid(x)
            fluid.backward.append_backward(fluid.layers.mean(y))
        exe = fluid.Executor(place)
        out = exe.run(main_program,
                      feed={'x': self.x},
                      fetch_list=[y, y.grad_name, x.grad_name])
        self.assertTrue(np.allclose(out[0], self.y))
        self.assertTrue(np.allclose(out[2], self.ref_backward(self.y, out[1])))

        with fluid.dygraph.guard(place):
            x = fluid.dygraph.to_variable(self.x)
            y = mysigmoid(x)
        self.assertTrue(np.allclose(y.numpy(), self.y))

    def test_check_api(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            for inplace in [True, False]:
                self.check_api(place, inplace)


class TestNNFunctionalSigmoidAPI(unittest.TestCase):
    def setUp(self):
        self.init_data()

    def init_data(self):
        self.x_shape = [10, 15]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.y = self.ref_forward(self.x)

    def ref_forward(self, x):
        return 1 / (1 + np.exp(-x))

    def test_check_api(self):
        main_program = Program()
        with fluid.program_guard(main_program):
            x = fluid.data(name='x', shape=self.x_shape)
1554
            y = F.sigmoid(x)
1555 1556 1557 1558 1559
        exe = fluid.Executor(fluid.CPUPlace())
        out = exe.run(main_program, feed={'x': self.x}, fetch_list=[y])
        self.assertTrue(np.allclose(out[0], self.y))


Q
qijun 已提交
1560 1561
if __name__ == "__main__":
    unittest.main()