fleet.py 51.4 KB
Newer Older
W
wuhuachaocoding 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import warnings
17
import paddle
18
import os
19
from types import MethodType
20
import numpy as np
W
wuhuachaocoding 已提交
21
from paddle.fluid.framework import _global_flags
22
from paddle.fluid import compiler
W
wuhuachaocoding 已提交
23 24 25 26 27
from .base.role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
from .base.strategy_compiler import StrategyCompiler
from .base.distributed_strategy import DistributedStrategy
from .base.meta_optimizer_factory import MetaOptimizerFactory
from .base.runtime_factory import RuntimeFactory
28
from paddle.fluid.wrapped_decorator import wrap_decorator
29
from paddle.fluid.dygraph import parallel_helper
30
from paddle.fluid.ir import apply_build_strategy
W
wuhuachaocoding 已提交
31 32
from .base import topology as tp
from .meta_parallel import model_parallel_random_seed
33
from paddle import _C_ops, _legacy_C_ops
34
from paddle.fluid import core
35

36 37
__all__ = []

38

39 40 41 42 43 44 45 46 47 48 49 50 51 52
def apply_ir_passes(main_program, startup_program, config):
    build_strategy = config._user_defined_strategy.build_strategy._copy()
    if not _global_flags()['FLAGS_apply_pass_to_program']:
        return build_strategy

    pipeline_opt = getattr(main_program, "_pipeline_opt", {})
    if pipeline_opt:
        main_program = pipeline_opt["section_program"]
        startup_program = startup_program._pipeline_opt["startup_program"]

    pass_attrs = {"use_cuda": config._is_collective}
    fuse_all_reduce = config._user_defined_strategy.fuse_all_reduce_ops
    if fuse_all_reduce and build_strategy.fuse_all_optimizer_ops:
        # FIXME(zjl): currently, fuse_all_optimizer_ops
53 54 55 56
        # have conflict with fuse_all_reduce_ops because
        # RawProgramOptimizer also inserts coalesce_tensor
        # into program. These two procedures may conflict
        # in which vars are to be fused.
57 58 59 60 61 62 63 64 65
        warnings.warn(
            'Currently, the fuse_all_optimizer_ops pass has conflict with fuse_all_reduce_ops pass. Disable the fuse_all_optimizer_ops pass temporarily.'
        )
        build_strategy.fuse_all_optimizer_ops = False

    return apply_build_strategy(main_program, startup_program, build_strategy,
                                pass_attrs)


66
def _inited_runtime_handler_(func):
67

68 69 70 71 72 73 74 75 76 77 78
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


79
def _is_non_distributed_check_(func):
80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


96
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
97
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
98 99


100 101 102
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
103
    Please reference the https://github.com/PaddlePaddle/PaddleFleetX for details
104 105 106 107 108


    Returns:
        Fleet: A Fleet instance

109
    Example for collective training:
1
123malin 已提交
110

111 112
        .. code-block:: python

1
123malin 已提交
113 114
            import paddle
            paddle.enable_static()
115
            import paddle.distributed.fleet as fleet
116 117 118

            fleet.init(is_collective=True)

119 120 121
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
122 123 124 125 126 127 128 129

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
130 131
            import paddle
            paddle.enable_static()
132 133
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
134
            fleet.init(strategy=strategy)
135

136
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
137
            optimizer = fleet.distributed_optimizer(optimizer)
138

139 140
            if fleet.is_first_worker():
                print("this is first worker")
141

142 143
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
144

145 146 147
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
148

149 150
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
151

152 153 154
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
155 156


157 158 159
    """

    def __init__(self):
160
        self._role_maker = None
161
        self.strategy_compiler = None
162
        self._is_collective = False
163
        self._runtime_handle = None
D
Dong Daxiang 已提交
164 165
        self._util = None
        self._context = {}
W
wuhuachaocoding 已提交
166
        self.user_defined_optimizer = paddle.optimizer.Optimizer(0.0)
167

168
    def init(self, role_maker=None, is_collective=False, strategy=None):
169 170 171
        """
        Initialize role_maker in Fleet.

172 173 174 175 176 177 178 179 180 181 182
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
183 184 185 186
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
209
                role = fleet.PaddleCloudRoleMaker()
210
                fleet.init(role)
211

212 213 214 215 216 217
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
218
                fleet.init(strategy=strategy)
219

220
        """
S
ShenLiang 已提交
221 222 223
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
224 225

        if role_maker is None:
226 227 228 229 230 231
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
232 233
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
234
        else:
235 236
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
237
                self._is_collective = role_maker._is_collective
238 239
            else:
                raise ValueError(
240 241
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}"
                    .format(type(role_maker)))
242
        self._role_maker._generate_role()
243

244 245 246
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

247
        self.strategy_compiler = StrategyCompiler()
248 249 250 251 252 253 254 255 256

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

J
Jiabin Yang 已提交
257
        if paddle.fluid.framework._non_static_mode():
258
            if self.worker_num() == 1:
259 260 261
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
262
                return
263 264 265 266
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
267 268 269 270 271 272 273 274 275
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
276
                paddle.distributed.init_parallel_env()
277

K
kuizhiqing 已提交
278 279 280 281 282 283 284 285 286
            # hybrid parallel not support for npu/xpu
            if self._user_defined_strategy.heter_ccl_mode == False:
                # init hybrid parallel environment in dygraph
                if tp._HYBRID_PARALLEL_GROUP is None:
                    self._init_hybrid_parallel_env()
                else:
                    warnings.warn(
                        "The dygraph hybrid parallel environment has been initialized."
                    )
W
WangXi 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        elif self._is_collective:
            use_sharding = self._user_defined_strategy.sharding

            # global group
            global_rank = self.worker_index()
            global_world_size = self.worker_num()
            # NOTE(wangxi): see sharding_optimizer
            global_ring_id = 3 if use_sharding else 0
            global_ranks = list(range(global_world_size))

            if tp._HYBRID_PARALLEL_GROUP is None: tp._CommunicateGroup()
            cg = tp._HYBRID_PARALLEL_GROUP
            self._hcg = cg
            cg.set_comm_group('global', global_rank, global_world_size,
                              global_ring_id, global_ranks)

Y
Yuang Liu 已提交
303 304 305
            use_tensor_parallel = self._user_defined_strategy.tensor_parallel
            use_mp = use_sharding or use_tensor_parallel

W
WangXi 已提交
306
            # hybrid group
Y
Yuang Liu 已提交
307 308 309 310 311 312 313 314 315 316
            if use_mp is False: return

            mp_degree_sharding = 1
            mp_degree_tensor_parallel = 1
            if use_sharding:
                sharding_configs = self._user_defined_strategy.sharding_configs
                mp_degree_sharding = int(sharding_configs['mp_degree'])

            if use_tensor_parallel:
                tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
317 318
                mp_degree_tensor_parallel = int(
                    tensor_parallel_configs['tensor_parallel_degree'])
Y
Yuang Liu 已提交
319 320 321

            if use_sharding and use_tensor_parallel:
                assert mp_degree_sharding == mp_degree_tensor_parallel
W
WangXi 已提交
322

Y
Yuang Liu 已提交
323
            mp_degree = mp_degree_sharding if use_sharding else mp_degree_tensor_parallel
W
WangXi 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336

            if mp_degree > 1:
                assert global_world_size % mp_degree == 0
                # NOTE(wangxi): mp_ring_id sync with sharding_optimizer.py _build_groups
                mp_ring_id = 0
                mp_rank = global_rank % mp_degree
                mp_group_id = global_rank // mp_degree
                mp_group_ranks = [
                    idx for idx in global_ranks
                    if idx // mp_degree == mp_group_id
                ]
                cg.set_comm_group('model', mp_rank, mp_degree, mp_ring_id,
                                  mp_group_ranks)
W
wuhuachaocoding 已提交
337
        return self
338 339 340 341 342 343 344 345

    def _init_hybrid_parallel_env(self):
        """initialize the hybrid environment
        """
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]
J
JZ-LIANG 已提交
346
        self.sharding_degree = self.hybrid_configs["sharding_degree"]
347 348 349

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"
J
JZ-LIANG 已提交
350
        assert self.sharding_degree >= 0, "sharding_degree should be greater or equal to 0"
351 352 353 354 355 356 357 358 359 360 361

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

        self._topology = tp.CommunicateTopology(
J
JZ-LIANG 已提交
362 363 364 365 366
            hybrid_group_names=["data", "pipe", "sharding", "model"],
            dims=[
                self.dp_degree, self.pp_degree, self.sharding_degree,
                self.mp_degree
            ])
367 368 369

        self._hcg = tp.HybridCommunicateGroup(self._topology)

370 371 372 373 374 375 376 377
        if self.mp_degree > 1:
            tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
            tensor_init_seed = tensor_parallel_configs["tensor_init_seed"]
            if tensor_init_seed == -1:
                model_parallel_random_seed()
            else:
                model_parallel_random_seed(tensor_init_seed)

378 379 380 381 382 383 384 385
    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

386 387 388 389 390 391 392
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
393

394 395 396 397 398 399 400 401
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

402
        """
403
        return self._role_maker._is_first_worker()
404 405 406 407 408 409 410

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
411 412 413 414

        Examples:

            .. code-block:: python
1
123malin 已提交
415

416 417 418 419
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

420
        """
421
        return self._role_maker._worker_index()
422 423 424 425 426 427 428

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
429

430
        Examples:
1
123malin 已提交
431

432 433 434 435 436 437
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

438
        """
439
        return self._role_maker._worker_num()
440

441 442 443 444 445 446 447 448 449 450 451 452
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

453 454 455 456 457 458 459
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
460 461

        Examples:
1
123malin 已提交
462

463 464 465 466 467 468
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

469
        """
470
        return self._role_maker._is_worker()
471

472 473 474
    def is_coordinator(self):
        return self._role_maker._is_coordinator()

475 476
    def worker_endpoints(self, to_string=False):
        """
477
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
478 479 480

        Returns:
            list/string: server endpoints
481 482

        Examples:
1
123malin 已提交
483

484 485 486 487 488 489
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

490 491
        """
        if to_string:
492
            return ",".join(self._role_maker._get_trainer_endpoints())
493
        else:
494
            return self._role_maker._get_trainer_endpoints()
495 496 497 498 499 500 501

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
502 503

        Examples:
1
123malin 已提交
504

505
            .. code-block:: python
1
123malin 已提交
506 507 508 509

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
510
        """
511
        return len(self._role_maker._get_pserver_endpoints())
512 513 514 515 516 517 518

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
519 520

        Examples:
1
123malin 已提交
521

522 523 524 525 526 527
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

528
        """
529
        return self._role_maker._server_index()
530 531 532 533 534 535 536

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
537 538

        Examples:
1
123malin 已提交
539

540 541 542 543 544 545
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

546
        """
547

548
        if to_string:
549
            return ",".join(self._role_maker._get_pserver_endpoints())
550
        else:
551
            return self._role_maker._get_pserver_endpoints()
552 553 554 555 556 557 558 559

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
560 561 562 563

        Examples:

            .. code-block:: python
1
123malin 已提交
564

565 566 567 568
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

569
        """
570 571
        return self._role_maker._is_server()

572 573
    def barrier_worker(self):
        """
574 575 576 577
        barrier all workers

        Returns:
            None
578
        """
579
        self._role_maker._barrier("worker")
580

581
    @is_non_distributed_check
582
    @inited_runtime_handler
583
    def init_worker(self, scopes=None):
584
        """
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

603
        """
604
        self._runtime_handle._init_worker(scopes)
605

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    @is_non_distributed_check
    @inited_runtime_handler
    def init_coordinator(self, scopes=None):
        """
        initialize coordinator node
        """
        self._runtime_handle._init_coordinator(scopes)

    def make_fl_strategy(self):
        self._runtime_handle._make_fl_strategy()

    @is_non_distributed_check
    @inited_runtime_handler
    def get_fl_client(self):
        """
        get worker(training node) ptr
        """
        return self._runtime_handle._worker

625
    @is_non_distributed_check
626
    @inited_runtime_handler
627
    def init_server(self, *args, **kwargs):
628
        """
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

648
        """
649
        self._runtime_handle._init_server(*args, **kwargs)
650

Z
zmxdream 已提交
651 652
    @is_non_distributed_check
    @inited_runtime_handler
T
Thunderbrook 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    def load_model(self, path, mode):
        """
        load fleet model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

671
                fleet.load_model("path", mode=0)
T
Thunderbrook 已提交
672 673

        """
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
        self._runtime_handle._load_persistables(path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def load_one_table(self, table_id, path, mode):
        """
        load fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_one_table(0, "path", mode=0)

        """
        self._runtime_handle._load_one_table(table_id, path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def load_inference_model(self, path, mode):
        """
        load fleet inference model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_inference_model("path", mode=1)

        """
        self._runtime_handle._load_inference_model(path, mode)
T
Thunderbrook 已提交
725

726
    @is_non_distributed_check
727
    @inited_runtime_handler
728 729
    def run_server(self):
        """
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

748 749 750
        """
        self._runtime_handle._run_server()

751
    @is_non_distributed_check
752
    @inited_runtime_handler
753 754
    def stop_worker(self):
        """
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

772 773 774
        """
        self._runtime_handle._stop_worker()

Z
zmxdream 已提交
775 776
    @is_non_distributed_check
    @inited_runtime_handler
T
tangwei12 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
    def save(self, dirname, feed=[], fetch=[], **configs):
        inference = True

        if not feed and not fetch:
            inference = False

        place = paddle.CPUPlace()
        executor = paddle.static.Executor(place)

        if inference:
            feeded_var_names = []
            fetch_var_names = []

            for var in feed:
                if isinstance(var, str):
                    feeded_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    feeded_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            for var in fetch:
                if isinstance(var, str):
                    fetch_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    fetch_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            fetch_vars = [
                paddle.static.default_main_program().global_block().var(name)
                for name in fetch_var_names
            ]

811 812 813 814
            self._runtime_handle._save_inference_model(executor, dirname,
                                                       feeded_var_names,
                                                       fetch_vars, None, True,
                                                       0)
T
tangwei12 已提交
815 816 817 818
        else:
            increment_mode = 0
            if "mode" in configs:
                increment_mode = int(configs["mode"])
819 820 821 822
            self._runtime_handle._save_persistables(executor,
                                                    dirname,
                                                    main_program=None,
                                                    mode=increment_mode)
T
tangwei12 已提交
823

Z
zmxdream 已提交
824 825
    @is_non_distributed_check
    @inited_runtime_handler
826 827 828 829 830 831
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
832 833
                             export_for_deployment=True,
                             mode=0):
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """
T
tangwei12 已提交
853 854 855
        # warnings.warn(
        #     "'save_inference_model' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
856

857 858 859 860
        self._runtime_handle._save_inference_model(executor, dirname,
                                                   feeded_var_names,
                                                   target_vars, main_program,
                                                   export_for_deployment, mode)
861

Z
zmxdream 已提交
862 863
    @is_non_distributed_check
    @inited_runtime_handler
864
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
865 866
        """

1
123malin 已提交
867
        saves all persistable tensors from :code:`main_program` to
868 869
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
870 871
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
872 873 874
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
875
            executor(Executor): The executor to run for saving persistable tensors.
876 877 878 879 880
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
881
            main_program(Program, optional): The program whose persistbale tensors will
882 883 884 885 886 887 888 889 890 891
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
892 893
                import paddle
                paddle.enable_static()
894 895 896 897 898 899 900
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
901 902
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
903 904

        """
T
tangwei12 已提交
905 906 907
        # warnings.warn(
        #     "'save_persistables' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
908

909 910
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
911

Z
zhaocaibei123 已提交
912 913 914 915 916
    @is_non_distributed_check
    @inited_runtime_handler
    def save_cache_model(self, dirname, **configs):
        return self._runtime_handle._save_cache_model(dirname, **configs)

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
    @is_non_distributed_check
    @inited_runtime_handler
    def check_save_pre_patch_done(self):
        return self._runtime_handle._check_save_pre_patch_done()

    @is_non_distributed_check
    @inited_runtime_handler
    def save_one_table(self, table_id, path, mode):
        """
        save fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.save_one_table(0, "path", mode=0)

        """
        self._runtime_handle._save_one_table(table_id, path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def save_dense_params(self,
                          executor,
                          dirname,
                          scope,
                          program,
                          var_names=None):
        """
        save fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                import paddle
                place = paddle.fluid.CPUPlace()
                exe = paddle.fluid.Executor(place)

                # build net
                # fleet.distributed_optimizer(...)

                fleet.save_dense_params(exe, "path", scope=paddle.static.global_scope(), program=paddle.static.default_main_program())

        """
        self._runtime_handle._save_dense_params(executor, dirname, scope,
                                                program, var_names)

981
    def shrink(self, threshold=None):
982 983
        self._runtime_handle._shrink(threshold)

984
    def distributed_optimizer(self, optimizer, strategy=None):
985
        """
986 987 988 989 990 991 992
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
993 994 995 996 997
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
998

999
        Returns:
1000
            Fleet: instance of fleet.
1001 1002

        Examples:
1003

1004
            .. code-block:: python
1005

1
123malin 已提交
1006
                import paddle
1007
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1008
                fleet.init(is_collective=True)
1009 1010 1011 1012
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

1013 1014
        """
        self.user_defined_optimizer = optimizer
1015

1016
        if strategy is not None:
T
tangwei12 已提交
1017 1018 1019 1020 1021 1022 1023
            if self._is_collective:
                warnings.warn(
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
1024
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
1025 1026

        self._context = {}
S
ShenLiang 已提交
1027

1028 1029
        return self

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
        return amp_optimizer

    def get_loss_scaling(self):
1047 1048
        """Return the real-time loss scaling factor.
        """
1049 1050 1051
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

H
huangxu96 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1112
        amp_optimizer = self._get_amp_optimizer()
1113
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1114

D
Dong Daxiang 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1142 1143 1144 1145 1146 1147 1148 1149 1150
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1151
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1152 1153 1154
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1155
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1156 1157
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1158
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1159 1160 1161 1162
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1163
            by minimize and a list of (param, grad) tensor pairs, param is
1164
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1165 1166
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1167 1168 1169
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1170

1171
            .. code-block:: python
1172

1173
                import paddle
1
123malin 已提交
1174
                paddle.enable_static()
1175
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1187

1
123malin 已提交
1188
                fleet.init(is_collective=True)
1189 1190 1191 1192
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1193

1194
                # for more examples, please reference https://github.com/PaddlePaddle/PaddleFleetX
1195 1196

        """
1197 1198 1199 1200
        if not isinstance(loss, list):
            return self._minimize_impl(loss, startup_program, parameter_list,
                                       no_grad_set)
        else:
J
Jiabin Yang 已提交
1201
            if paddle.fluid.framework._non_static_mode(
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
            ) or self._role_maker._is_non_distributed() or self._is_collective:
                raise ValueError("loss can be list only in PS mode")
            return self._minimize_losses_impl(loss, startup_program,
                                              parameter_list, no_grad_set)

    def _minimize_impl(self,
                       loss,
                       startup_program=None,
                       parameter_list=None,
                       no_grad_set=None):
D
Dong Daxiang 已提交
1212 1213 1214
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
J
Jiabin Yang 已提交
1215
        if paddle.fluid.framework._non_static_mode():
1216 1217
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1218
            self._context = context
1219 1220
            return target_opt.minimize(loss)

1221 1222
        # cache original feed forward program
        self.origin_main_program = loss.block.program
B
Baibaifan 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
        # add distributed attr
        if not hasattr(self.origin_main_program, "distributed_info_"):
            setattr(self.origin_main_program, "distributed_info_", dict())
            self.origin_main_program.distributed_info_[
                "dp_degree"] = self._user_defined_strategy.sharding_configs[
                    "dp_degree"]
            self.origin_main_program.distributed_info_[
                "mp_degree"] = self._user_defined_strategy.sharding_configs[
                    "mp_degree"]
            self.origin_main_program.distributed_info_[
                "pp_degree"] = self._user_defined_strategy.sharding_configs[
                    "pp_degree"]
            self.origin_main_program.distributed_info_[
                "sharding_degree"] = self._user_defined_strategy.sharding_configs[
                    "sharding_degree"]

1239
        context["origin_main_program"] = self.origin_main_program
1240
        context["origin_main_programs"] = [self.origin_main_program]
1241
        context["loss"] = loss
1242 1243
        if startup_program == None:
            self.origin_startup_program = \
1244 1245
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1246 1247 1248
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1249

1250
        context["origin_startup_program"] = startup_program
1251
        context["origin_startup_programs"] = [startup_program]
1252
        context["role_maker"] = self._role_maker
1253

1254
        # Use the auto-parallel's routines instead
1255
        if self._user_defined_strategy.semi_auto or self._user_defined_strategy.auto_search:
W
wuhuachaocoding 已提交
1256
            from ..auto_parallel.parallelizer import AutoParallelizer
1257 1258 1259
            auto_parallelizer = AutoParallelizer(self)
            optimize_ops, params_grads, dist_startup_prog, dist_main_prog = auto_parallelizer.parallelize(
                loss, startup_program, parameter_list, no_grad_set)
1260

1261 1262
            return optimize_ops, params_grads, dist_startup_prog, dist_main_prog

1263 1264 1265 1266
        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1267

D
Dong Daxiang 已提交
1268 1269 1270
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1271 1272 1273 1274 1275 1276

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1277
        if copy_user_defined_strategy._is_strict_auto():
1278 1279
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1280
                opt._enable_strategy(copy_user_defined_strategy, context)
1281

1282 1283
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1284
        can_not_apply_optimizer_list = []
1285 1286 1287 1288
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1289
                                copy_user_defined_strategy)
1290 1291
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1292
            elif opt._can_apply() and opt._is_graph_out():
1293
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1294 1295
            else:
                can_not_apply_optimizer_list.append(opt)
1296
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1297
        meta_optimizer, graph_optimizer = \
1298 1299
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1300
                copy_user_defined_strategy, valid_optimizer_list,
1301
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1302

D
Dong Daxiang 已提交
1303
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1304 1305 1306
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1307 1308
        # print("valid_strategy:", context["valid_strategy"])
        # print("user_defined_strategy:", context["user_defined_strategy"])
1309

1310 1311 1312 1313 1314 1315
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1316
        self._context = context
1317

D
Dong Daxiang 已提交
1318
        self.valid_strategy = valid_strategy
1319
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1320

1321 1322
        optimize_ops = []
        params_grads = []
1323

1324 1325 1326 1327 1328 1329 1330 1331
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
1332 1333 1334 1335
            return self.user_defined_optimizer.minimize(loss,
                                                        startup_program,
                                                        parameter_list,
                                                        no_grad_set=no_grad_set)
1336

1337
        if meta_optimizer:
1338
            # print("before minimize program id:", id(loss.block.program))
1339
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1340
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1341
            # print("after minimize program id:", id(loss.block.program))
1342

1343
            default_program = paddle.static.default_main_program()
1344
            # print("default program id:", id(default_program))
1345 1346 1347

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)
1348
            # print("default program id after switch:", id(default_program))
1349

1350 1351
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1352
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1353

1354 1355
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1356

1357
        if graph_optimizer:
1358
            # print("before graph minimize program id:", id(loss.block.program))
D
Dong Daxiang 已提交
1359
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1360
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1361 1362 1363 1364
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1365 1366
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads
1367 1368
        else:
            apply_ir_passes(loss.block.program, startup_program, self)
1369

1370 1371
        if not self._role_maker._is_heter_parameter_server_mode:
            program = paddle.static.default_main_program()
1372 1373 1374 1375 1376
            opt_info = {} if program._fleet_opt is None else program._fleet_opt
            opt_info["mpi_size"] = self.worker_num()
            opt_info["mpi_rank"] = self.worker_index()
            for k, v in self._user_defined_strategy.trainer_desc_configs.items(
            ):
1377
                if v or k not in opt_info:
1378
                    opt_info[k] = v
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
            program._fleet_opt = opt_info

        if self._runtime_handle is None:
            self._runtime_handle = RuntimeFactory()._create_runtime(context)

        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])

        return optimize_ops, params_grads

    def _minimize_losses_impl(self,
                              losses,
                              startup_programs=None,
                              parameter_list=None,
                              no_grad_set=None):
        context = {}

        # cache original feed forward program
        self.origin_main_program = losses[0].block.program
        context["origin_main_program"] = self.origin_main_program
        context["origin_main_programs"] = []
        for loss in losses:
            context["origin_main_programs"].append(loss.block.program)
        context["loss"] = losses

        if startup_programs is None:
            if len(losses) == 1:
                startup_programs = [paddle.static.default_startup_program()]
            else:
                raise ValueError(
                    "startup_program can't be None when loss is list.")
        self.origin_startup_program = startup_programs[0].clone(for_test=False)
        context["origin_startup_program"] = startup_programs[0]
        context["origin_startup_programs"] = []
        for program in startup_programs:
            context["origin_startup_programs"].append(program)

        context["role_maker"] = self._role_maker

        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)

        context["valid_strategy"] = copy.deepcopy(self._user_defined_strategy)

        self._context = context

        self.valid_strategy = context["valid_strategy"]
        self.valid_strategy._enable_env()

        optimize_ops = []
        params_grads = []

W
wuhuachaocoding 已提交
1431
        from .meta_optimizers import ParameterServerOptimizer
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
        ps_optimizer = ParameterServerOptimizer(self.user_defined_optimizer)
        ps_optimizer._set_basic_info(losses, self._role_maker,
                                     self.user_defined_optimizer,
                                     self._user_defined_strategy)
        optimize_ops, params_grads = ps_optimizer.minimize_losses_impl(
            losses, startup_programs, parameter_list, no_grad_set=no_grad_set)

        # default_program = paddle.static.default_main_program()

        # if id(default_program) != id(losses[0].block.program):
        #     paddle.fluid.framework.switch_main_program(losses[0].block.program)

        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads

        for loss in losses:
            program = loss.block.program
            opt_info = {} if program._fleet_opt is None else program._fleet_opt
1450 1451 1452 1453
            opt_info["mpi_size"] = self.worker_num()
            opt_info["mpi_rank"] = self.worker_index()
            for k, v in self._user_defined_strategy.trainer_desc_configs.items(
            ):
1454
                if v or k not in opt_info:
1455
                    opt_info[k] = v
1456
            program._fleet_opt = opt_info
1457
            # print("fleet base opt info:", id(program), program._fleet_opt)
1458

1459
        if self._runtime_handle is None:
1460
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1461

1462 1463
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1464 1465

        return optimize_ops, params_grads