adam_kernel.cc 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/adam_kernel.h"

#include <vector>

#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/funcs/adam_functors.h"

DECLARE_int32(inner_op_parallelism);

namespace phi {

template <typename T, typename Context>
void AdamDenseKernel(const Context& dev_ctx,
                     const DenseTensor& param,
                     const DenseTensor& grad,
                     const DenseTensor& learning_rate,
                     const DenseTensor& moment1,
                     const DenseTensor& moment2,
                     const DenseTensor& beta1_pow,
                     const DenseTensor& beta2_pow,
                     paddle::optional<const DenseTensor&> master_param,
                     paddle::optional<const DenseTensor&> skip_update,
                     const Scalar& beta1,
                     const Scalar& beta2,
                     const Scalar& epsilon,
                     bool lazy_mode,
                     int64_t min_row_size_to_use_multithread,
                     bool multi_precision,
                     bool use_global_beta_pow,
                     DenseTensor* param_out,
                     DenseTensor* moment1_out,
                     DenseTensor* moment2_out,
                     DenseTensor* beta1_pow_out,
                     DenseTensor* beta2_pow_out,
                     DenseTensor* master_param_outs) {
  VLOG(4) << "use_global_beta_pow:" << use_global_beta_pow;

  bool skip_update_ = false;
  if (skip_update.is_initialized()) {
    PADDLE_ENFORCE_EQ(
        skip_update->numel(),
        1,
        errors::InvalidArgument("Input(SkipUpdate) size must be 1, but get %d",
                                skip_update->numel()));
    std::vector<bool> skip_update_vec;
    paddle::framework::TensorToVector(*skip_update, dev_ctx, &skip_update_vec);
    skip_update_ = skip_update_vec[0];
  }
  // skip_update=true, just copy input to output, and TensorCopy will call
  // mutable_data
  if (skip_update_) {
    VLOG(4) << "Adam skip update";
    phi::Copy(dev_ctx, param, dev_ctx.GetPlace(), false, param_out);
    phi::Copy(dev_ctx, moment1, dev_ctx.GetPlace(), false, moment1_out);
    phi::Copy(dev_ctx, moment2, dev_ctx.GetPlace(), false, moment2_out);
74 75
    phi::Copy(dev_ctx, beta1_pow, beta1_pow.place(), false, beta1_pow_out);
    phi::Copy(dev_ctx, beta2_pow, beta2_pow.place(), false, beta2_pow_out);
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

    return;
  }

  T beta1_ = beta1.to<T>();
  T beta2_ = beta2.to<T>();
  T epsilon_ = epsilon.to<T>();

  VLOG(3) << "beta1_pow.numel() : " << beta1_pow.numel();
  VLOG(3) << "beta2_pow.numel() : " << beta2_pow.numel();
  VLOG(3) << "param.numel(): " << param.numel();

  PADDLE_ENFORCE_EQ(
      beta1_pow_out->numel(),
      1,
      errors::InvalidArgument("beta1 pow output size should be 1, but received "
                              "value is:%d.",
                              beta1_pow_out->numel()));

  PADDLE_ENFORCE_EQ(
      beta2_pow_out->numel(),
      1,
      errors::InvalidArgument("beta2 pow output size should be 1, but received "
                              "value is:%d.",
                              beta2_pow_out->numel()));

  T beta1_p = beta1_pow.data<T>()[0];
  T beta2_p = beta2_pow.data<T>()[0];

  if (!use_global_beta_pow) {
    dev_ctx.template Alloc<T>(beta1_pow_out)[0] = beta1_ * beta1_p;
    dev_ctx.template Alloc<T>(beta2_pow_out)[0] = beta2_ * beta2_p;
  }

  T* param_out_ptr = dev_ctx.template Alloc<T>(param_out);
  T* mom1_out_ptr = dev_ctx.template Alloc<T>(moment1_out);
  T* mom2_out_ptr = dev_ctx.template Alloc<T>(moment2_out);

  T learning_rate_ =
      learning_rate.data<T>()[0] * (sqrt(1 - beta2_p) / (1 - beta1_p));
  T eps = epsilon_ * sqrt(1 - beta2_p);

  paddle::operators::jit::adam_attr_t attr(beta1_, beta2_);
  int64_t numel = param.numel();

  const T* param_ptr = param.data<T>();
  const T* mom1_ptr = moment1.data<T>();
  const T* mom2_ptr = moment2.data<T>();
  const T* grad_ptr = grad.data<T>();

  auto adam =
      paddle::operators::jit::KernelFuncs<paddle::operators::jit::AdamTuple<T>,
                                          phi::CPUPlace>::Cache()
          .At(attr);

  static constexpr int64_t chunk_size = 512;

#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int64_t i = 0; i < numel / chunk_size; ++i) {
    const int64_t offset = i * chunk_size;
    adam(beta1_,
         beta2_,
         -learning_rate_,
         eps,
         chunk_size,
         grad_ptr + offset,
         mom1_ptr + offset,
         mom2_ptr + offset,
         param_ptr + offset,
         mom1_out_ptr + offset,
         mom2_out_ptr + offset,
         param_out_ptr + offset);
  }

  if (numel % chunk_size != 0) {
    const int64_t offset = (numel / chunk_size) * chunk_size;
    const int64_t tail_numel = numel % chunk_size;
    adam(beta1_,
         beta2_,
         -learning_rate_,
         eps,
         tail_numel,
         grad_ptr + offset,
         mom1_ptr + offset,
         mom2_ptr + offset,
         param_ptr + offset,
         mom1_out_ptr + offset,
         mom2_out_ptr + offset,
         param_out_ptr + offset);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(adam, CPU, ALL_LAYOUT, phi::AdamDenseKernel, float, double) {
}