pool_with_index_op.cc 10.5 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_with_index_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20 21
inline int OutputSizeMaxPool(int input_size, int filter_size, int padding,
                             int stride) {
C
chengduoZH 已提交
22 23 24 25 26 27 28 29 30
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
C
fix doc  
chengduoZH 已提交
31
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
32 33 34 35 36
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "X(Input) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Out(Output) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Mask"),
C
chengduoZH 已提交
37
                   "Mask(Output) of Pooling should not be null.");
C
chengduoZH 已提交
38 39 40 41 42 43 44 45

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
46
                   "Pooling intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
47 48 49 50 51 52 53 54

    if (ctx->Attrs().Get<bool>("globalPooling")) {
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
      for (size_t i = 0; i < ksize.size(); ++i)
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
    }

    PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
C
fix doc  
chengduoZH 已提交
55
                   "Input size and pooling size should be consistent.");
C
chengduoZH 已提交
56
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
C
chengduoZH 已提交
57
                      "Strides size and pooling size should be the same.");
C
chengduoZH 已提交
58
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
C
chengduoZH 已提交
59
                      "Paddings size and pooling size should be the same.");
C
chengduoZH 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(OutputSizeMaxPool(in_x_dims[i + 2], ksize[i],
                                               paddings[i], strides[i]));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
  }
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
C
fix doc  
chengduoZH 已提交
76
  void InferShape(framework::InferShapeContext *ctx) const override {
77
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
C
chengduoZH 已提交
78
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
C
chengduoZH 已提交
79 80
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Input(X@GRAD) should not be null.");
C
chengduoZH 已提交
81 82 83 84 85 86 87 88 89 90 91
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool2dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
C
chengduoZH 已提交
92
        "(Tensor) The input tensor of pooling operator. "
C
chengduoZH 已提交
93 94 95
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of image.");
    AddOutput("Out",
C
chengduoZH 已提交
96
              "(Tensor) The output tensor of pooling operator."
C
chengduoZH 已提交
97 98 99 100
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of image.");
C
chengduoZH 已提交
101
    AddOutput("Mask",
C
chengduoZH 已提交
102
              "(Tensor) The Mask tensor of pooling operator."
C
chengduoZH 已提交
103 104 105 106
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is the number of channels, H and W "
              "is the height and width of image."
              "The value in it is the index in current feature map");
C
chengduoZH 已提交
107 108

    AddAttr<std::vector<int>>(
C
chengduoZH 已提交
109
        "ksize",
C
chengduoZH 已提交
110
        "The pooling window size(height, width) of pooling operator."
C
chengduoZH 已提交
111
        "If globalPooling = true, ksize is ignored and need not be "
C
chengduoZH 已提交
112 113
        "specified.");  // TODO(Chengduo): Add checker. (Currently,
                        // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
114 115
    AddAttr<bool>(
        "globalPooling",
C
chengduoZH 已提交
116 117 118
        "Whether to use the globalPooling."
        "Bool constant equal to false or true."
        "Default false."
C
chengduoZH 已提交
119 120 121
        "If globalPooling = true, ksize is ignored and need not be specified.")
        .SetDefault(false);
    AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
122
                              "The strides(height, width) of pooling window."
C
chengduoZH 已提交
123
                              "Default {1,1}.")
C
chengduoZH 已提交
124 125
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
                              // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
126 127 128 129
    AddAttr<std::vector<int>>(
        "paddings",
        "The zero padding(height, width) size on both sides"
        "Default {0,0}.")
C
chengduoZH 已提交
130 131
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
                              // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
132 133

    AddComment(R"DOC(
C
chengduoZH 已提交
134 135 136 137 138 139
The maxPooling2d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format. Where N is batch size, C is the
number of channels, H and W is the height and width of feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
140 141 142 143 144 145 146 147 148 149 150
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
       X shape: (N, C, H_in, W_in)
  Output:
       Out shape: (N, C, H_out, W_out)
       Mask shape: (N, C, H_out, W_out)
  where
       H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
C
chengduoZH 已提交
151 152 153 154 155 156 157 158 159 160 161
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool3dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
C
chengduoZH 已提交
162
        "(Tensor) The input tensor of pooling operator. "
C
chengduoZH 已提交
163 164 165 166
        "The format of input tensor is NCDHW. Where N is batch size, C is "
        "the number of channels, D, H and W is the depth, height and width of "
        "image.");
    AddOutput("Out",
C
chengduoZH 已提交
167
              "(Tensor) The output tensor of pooling operator."
C
chengduoZH 已提交
168 169 170 171
              "The format of output tensor is also NCDHW."
              "Where N is batch size, C is "
              "the number of channels, D, H and W is the depth, height and "
              "width of image.");
C
chengduoZH 已提交
172
    AddOutput("Mask",
C
chengduoZH 已提交
173
              "(Tensor) The Mask tensor of pooling operator."
C
chengduoZH 已提交
174 175 176 177
              "The format of output tensor is also NCDHW."
              "Where N is batch size, C is the number of channels, D, H and W "
              "is the depth, height and width of image."
              "The value in it is the index in current feature map");
C
chengduoZH 已提交
178 179

    AddAttr<std::vector<int>>(
C
chengduoZH 已提交
180
        "ksize",
C
chengduoZH 已提交
181
        "The pooling window size(depth, height, width) of pooling operator."
C
chengduoZH 已提交
182
        "If globalPooling = true, ksize is ignored and need not be "
C
chengduoZH 已提交
183 184
        "specified.");  // TODO(Chengduo): Add checker. (Currently,
                        // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
185 186
    AddAttr<bool>(
        "globalPooling",
C
chengduoZH 已提交
187 188 189
        "Whether to use the globalPooling."
        "Bool constant equal to false or true."
        "Default false."
C
chengduoZH 已提交
190 191 192 193
        "If globalPooling = true, ksize is ignored and need not be specified.")
        .SetDefault(false);
    AddAttr<std::vector<int>>(
        "strides",
C
chengduoZH 已提交
194 195
        "Strides(depth, height, width) of pooling operator."
        "Default {1,1,1}.")
C
chengduoZH 已提交
196 197
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                                 // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
198 199
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
200 201
        "Paddings(depth, height, width) of pooling operator."
        "Default {0,0,0}.")
C
chengduoZH 已提交
202 203
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                                 // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
204

C
chengduoZH 已提交
205
    AddComment(R"DOC(
C
chengduoZH 已提交
206 207 208 209 210 211
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
Input(X) and output(Out, Mask) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
212 213 214 215 216 217 218 219 220 221 222 223
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
       X shape: (N, C, D_in, H_in, W_in)
  Output:
       Out shape: (N, C, D_out, H_out, W_out)
       Mask shape: (N, C, D_out, H_out, W_out)
  where
       D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
C
chengduoZH 已提交
224 225 226
)DOC");
  }
};
C
chengduoZH 已提交
227

C
chengduoZH 已提交
228 229 230 231 232
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

C
chengduoZH 已提交
233 234
REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool2dWithIndexOpMaker, max_pool2d_with_index_grad,
C
chengduoZH 已提交
235 236 237
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
238
    max_pool2d_with_index,
C
chengduoZH 已提交
239 240
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
241
    max_pool2d_with_index_grad,
C
chengduoZH 已提交
242 243
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)

C
chengduoZH 已提交
244 245
REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool3dWithIndexOpMaker, max_pool3d_with_index_grad,
C
chengduoZH 已提交
246 247 248
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
249
    max_pool3d_with_index,
C
chengduoZH 已提交
250 251
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
252
    max_pool3d_with_index_grad,
C
chengduoZH 已提交
253
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)