elementwise_add_op_npu.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

18
#include "paddle/fluid/framework/tensor_util.h"
19 20 21 22 23
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {
24
using Tensor = framework::Tensor;
25

26
template <typename T>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
class ElementwiseAddNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* out = ctx.Output<framework::LoDTensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());

    auto runner = NpuOpRunner("Add", {*x, *y}, {*out}, {});
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
template <typename T>
class ElementwiseAddGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    // NOTE(zhiqiu): It seems Ascend Sub follow the broadcast sematics with
    // default axis=-1?
    // So, the sub_grad should do reduce if needed.
    // For example, the shape of each variable in elementwise_sub:
    // x, dx: [2, 3, 5]
    // y, dy: [1, 5]
    // out, dout: [2, 3, 5]
    // Then, out = x - y  =>  dx = dout, dy = -dout
    // And, the shape of dy can be computed by two stages reduce,
    // 1. [2, 3, 5] => [3, 5], ReduceSumD on axis = 0, keep_dims = false.
    // 2. [3, 5] => [1, 5], ReduceSumD on axis = 0, keep_dims = true.

    if (dx) {
      dx->mutable_data<T>(ctx.GetPlace());
      // For dx
      // stage 1
      auto reduce_ndim = dout->dims().size() - dx->dims().size();
      std::vector<int> axes;
      for (auto i = 0; i < reduce_ndim; ++i) {
        axes.push_back(i);
      }
      Tensor* tmp_dout = const_cast<Tensor*>(dout);
      Tensor reduced_dout(dx->type());
      if (axes.size() != 0) {
        std::vector<int64_t> reduced_dout_dims;
        for (auto i = reduce_ndim; i < dout->dims().size(); ++i) {
          reduced_dout_dims.push_back(dout->dims()[i]);
        }
        reduced_dout.Resize(framework::make_ddim(reduced_dout_dims));
        reduced_dout.mutable_data<T>(ctx.GetPlace());
        auto runner = NpuOpRunner("ReduceSumD", {*dout}, {reduced_dout},
                                  {{"axes", axes}, {"keep_dims", false}});
        runner.Run(stream);
        tmp_dout = &reduced_dout;
      }

      // stage 2
      axes.clear();
      for (auto i = 0; i < dx->dims().size(); ++i) {
        if (dx->dims()[i] == 1) {
          axes.push_back(i);
        }
      }
      if (axes.size() != 0) {
        auto runner = NpuOpRunner("ReduceSumD", {*tmp_dout}, {*dx},
                                  {{"axes", axes}, {"keep_dims", true}});
        runner.Run(stream);
      } else {
103 104 105
        framework::TensorCopy(
            *tmp_dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dx);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
      }
    }

    if (dy) {
      // For dy
      // stage 1
      auto reduce_ndim = dout->dims().size() - dy->dims().size();
      std::vector<int> axes;
      for (auto i = 0; i < reduce_ndim; ++i) {
        axes.push_back(i);
      }
      Tensor* tmp_dout = const_cast<Tensor*>(dout);
      Tensor reduced_dout(dout->type());
      if (axes.size() != 0) {
        std::vector<int64_t> reduced_dout_dims;
        for (auto i = reduce_ndim; i < dout->dims().size(); ++i) {
          reduced_dout_dims.push_back(dout->dims()[i]);
        }
        reduced_dout.Resize(framework::make_ddim(reduced_dout_dims));
        reduced_dout.mutable_data<T>(ctx.GetPlace());
        auto runner = NpuOpRunner("ReduceSumD", {*dout}, {reduced_dout},
                                  {{"axes", axes}, {"keep_dims", false}});
        runner.Run(stream);
        tmp_dout = &reduced_dout;
      }

      // stage 2
      axes.clear();
      for (auto i = 0; i < dy->dims().size(); ++i) {
        if (dy->dims()[i] == 1) {
          axes.push_back(i);
        }
      }
      if (axes.size() != 0) {
        dy->mutable_data<T>(ctx.GetPlace());
        auto runner = NpuOpRunner("ReduceSumD", {*tmp_dout}, {*dy},
                                  {{"axes", axes}, {"keep_dims", true}});
        runner.Run(stream);
      } else {
145 146 147
        framework::TensorCopy(
            *tmp_dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dy);
148 149 150 151 152
      }
    }
  }
};

153 154 155 156
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
157 158 159 160
namespace plat = paddle::platform;

REGISTER_OP_NPU_KERNEL(elementwise_add, ops::ElementwiseAddNPUKernel<float>,
                       ops::ElementwiseAddNPUKernel<plat::float16>);
161

162 163 164
REGISTER_OP_NPU_KERNEL(elementwise_add_grad,
                       ops::ElementwiseAddGradNPUKernel<float>,
                       ops::ElementwiseAddGradNPUKernel<plat::float16>);