conv_compute_test.cc 26.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/conv_compute.h"
#include <gtest/gtest.h>
S
shixiaowei02 已提交
17
#include <limits>
T
tensor-tang 已提交
18 19
#include <memory>
#include <utility>
T
tensor-tang 已提交
20
#include <vector>
S
shixiaowei02 已提交
21
#include "paddle/fluid/lite/arm/math/type_trans.h"
T
tensor-tang 已提交
22 23 24 25 26 27 28
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

29 30 31 32
static int get_rand(int start, int end) {
  int i = rand();  // NOLINT
  i = (i % (end - start)) + start;
  return i;
S
shixiaowei02 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
}

template <typename Dtype1, typename Dtype2>
static void conv_basic(const Dtype1* din, Dtype2* dout, int num, int chout,
                       int hout, int wout, int chin, int hin, int win,
                       const Dtype1* weights, const Dtype2* bias, int group,
                       int kernel_w, int kernel_h, int stride_w, int stride_h,
                       int dila_w, int dila_h, int pad_w, int pad_h,
                       bool flag_bias, bool flag_relu) {
  Dtype2 beta = 0;
  auto src_data = din;
  auto dst_data_ref = dout;
  auto weights_data = weights;
  auto with_bias = flag_bias;
  auto bias_data = bias;

  int in_num = num;
  int out_channels = chout;
  int out_h = hout;
  int out_w = wout;
T
tensor-tang 已提交
53

S
shixiaowei02 已提交
54 55 56 57 58 59 60 61
  int in_channel = chin;
  int in_h = hin;
  int in_w = win;
  int out_c_group = out_channels / group;
  int in_c_group = in_channel / group;

  for (int n = 0; n < in_num; ++n) {
    for (int g = 0; g < group; ++g) {
T
tensor-tang 已提交
62
      for (int oc = 0; oc < out_c_group; ++oc) {
S
shixiaowei02 已提交
63 64 65 66 67 68 69 70
        for (int oh = 0; oh < out_h; ++oh) {
          for (int ow = 0; ow < out_w; ++ow) {
            int out_idx = n * group * out_c_group * out_h * out_w +
                          g * out_c_group * out_h * out_w + oc * out_h * out_w +
                          oh * out_w + ow;
            Dtype2 bias_d =
                with_bias ? (bias_data[g * out_c_group + oc]) : (Dtype2)0;
            dst_data_ref[out_idx] = bias_d;  // + dst_data_ref[out_idx] * beta;
T
tensor-tang 已提交
71 72 73
            for (int ic = 0; ic < in_c_group; ++ic) {
              for (int kh = 0; kh < kernel_h; ++kh) {
                for (int kw = 0; kw < kernel_w; ++kw) {
S
shixiaowei02 已提交
74 75 76 77
                  int iw = ow * stride_w - pad_w + kw * (dila_w);
                  int ih = oh * stride_h - pad_h + kh * (dila_h);
                  if (iw < 0 || iw >= in_w) continue;
                  if (ih < 0 || ih >= in_h) continue;
T
tensor-tang 已提交
78

S
shixiaowei02 已提交
79 80 81
                  int iidx = n * in_channel * in_h * in_w +
                             g * in_c_group * in_h * in_w + ic * in_h * in_w +
                             ih * in_w + iw;
T
tensor-tang 已提交
82 83 84 85 86
                  int widx =
                      g * out_c_group * in_c_group * kernel_h * kernel_w +
                      oc * in_c_group * kernel_h * kernel_w +
                      ic * kernel_h * kernel_w + kh * kernel_w + kw;

S
shixiaowei02 已提交
87
                  dst_data_ref[out_idx] += src_data[iidx] * weights_data[widx];
T
tensor-tang 已提交
88 89 90 91
                }
              }
            }
            if (flag_relu) {
S
shixiaowei02 已提交
92 93 94
              dst_data_ref[out_idx] = dst_data_ref[out_idx] > (Dtype2)0
                                          ? dst_data_ref[out_idx]
                                          : (Dtype2)0;
T
tensor-tang 已提交
95 96 97 98 99 100 101 102
            }
          }
        }
      }
    }
  }
}

S
shixiaowei02 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
template <typename Dtype1, typename Dtype2>
void conv_compute_ref(const operators::ConvParam& param) {
  const Dtype1* din = param.x->data<Dtype1>();
  Dtype2* dout = param.output->mutable_data<Dtype2>();

  int num = param.x->dims()[0];
  int chout = param.output->dims()[1];
  int hout = param.output->dims()[2];
  int wout = param.output->dims()[3];

  int chin = param.x->dims()[1];
  int hin = param.x->dims()[2];
  int win = param.x->dims()[3];

  const Dtype1* weights = param.filter->mutable_data<Dtype1>();
  Dtype2* bias = nullptr;
  if (param.bias != nullptr) {
    bias = param.bias->mutable_data<Dtype2>();
  }

  int group = param.groups;
  int kernel_w = param.filter->dims()[2];
  int kernel_h = param.filter->dims()[3];
  int stride_w = param.strides[0];
  int stride_h = param.strides[1];
  int dila_w = param.dilations[0];
  int dila_h = param.dilations[1];

  int pad_w = param.paddings[0];
  int pad_h = param.paddings[1];
  bool flag_bias = (param.bias != nullptr);
  bool flag_relu = param.fuse_relu;

  conv_basic(din, dout, num, chout, hout, wout, chin, hin, win, weights, bias,
             group, kernel_w, kernel_h, stride_w, stride_h, dila_w, dila_h,
             pad_w, pad_h, flag_bias, flag_relu);
}

T
tensor-tang 已提交
141
TEST(conv_arm, retrive_op) {
142 143
  auto conv = KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>(
      "conv2d");
T
tensor-tang 已提交
144 145 146 147
  ASSERT_FALSE(conv.empty());
  ASSERT_TRUE(conv.front());
}

S
shixiaowei02 已提交
148 149 150 151 152 153 154
TEST(conv_arm_int8, retrive_op) {
  auto conv =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kInt8)>("conv2d");
  ASSERT_FALSE(conv.empty());
  ASSERT_TRUE(conv.front());
}

T
tensor-tang 已提交
155 156 157 158 159 160
TEST(conv_arm, init) {
  ConvCompute conv;
  ASSERT_EQ(conv.precision(), PRECISION(kFloat));
  ASSERT_EQ(conv.target(), TARGET(kARM));
}

S
shixiaowei02 已提交
161 162 163 164 165 166 167 168 169
TEST(conv_arm_int8, init) {
  ConvComputeInt8<PRECISION(kFloat)> float_out;
  ASSERT_EQ(float_out.precision(), PRECISION(kInt8));
  ASSERT_EQ(float_out.target(), TARGET(kARM));
  ConvComputeInt8<PRECISION(kInt8)> int8_out;
  ASSERT_EQ(float_out.precision(), PRECISION(kInt8));
  ASSERT_EQ(float_out.target(), TARGET(kARM));
}

170
TEST(conv_arm_int8, int8_int32) {
S
shixiaowei02 已提交
171 172 173 174 175 176
  DeviceInfo::Init();
  for (auto n : {2}) {
    for (auto ic : {6}) {
      for (auto oc : {6}) {
        for (auto ih : {9}) {
          for (auto iw : {9}) {
177 178 179
            for (auto flag_bias : {false, true}) {
              for (auto flag_relu : {false, true}) {
                for (auto depthwise : {false, true}) {
S
shixiaowei02 已提交
180 181 182 183 184 185 186 187 188
                  for (auto dilation : {1}) {
                    for (auto stride : {1}) {
                      for (auto padding : {0}) {
                        for (auto ks : {1}) {
                          int group = 1;
                          if (depthwise) {  // depthwise convolution ?
                            group = oc = ic;
                          }

S
update  
Shixiaowei02 已提交
189 190 191 192
                          LOG(INFO) << "flag_bias: " << flag_bias;
                          LOG(INFO) << "flag_relu: " << flag_relu;
                          LOG(INFO) << "depthwise: " << depthwise;

S
shixiaowei02 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
                          const int dks = dilation * (ks - 1) + 1;
                          int oh = (ih + 2 * padding - dks) / stride + 1;
                          int ow = (iw + 2 * padding - dks) / stride + 1;
                          std::vector<int64_t> input_shape = {n, ic, ih, iw};
                          std::vector<int64_t> filter_shape = {oc, ic / group,
                                                               ks, ks};
                          std::vector<int64_t> output_shape({n, oc, oh, ow});

                          Tensor input_int8;
                          Tensor filter_int8;
                          Tensor output_int32, output_int32_ref;

                          input_int8.Resize(input_shape);
                          filter_int8.Resize(filter_shape);
                          output_int32.Resize(output_shape);
                          output_int32_ref.Resize(output_shape);

                          int8_t* input_int8_data =
                              input_int8.mutable_data<int8_t>();
                          int8_t* filter_int8_data =
                              filter_int8.mutable_data<int8_t>();
                          for (int i = 0; i < input_int8.dims().production();
                               i++) {
S
Shixiaowei02 已提交
216
                            input_int8_data[i] = i % 10 * (i % 3 - 1);
S
shixiaowei02 已提交
217 218 219
                          }
                          for (int i = 0; i < filter_int8.dims().production();
                               i++) {
S
Shixiaowei02 已提交
220
                            filter_int8_data[i] = i % 10 * (i % 3 - 1);
S
shixiaowei02 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
                          }

                          operators::ConvParam param;
                          param.x = &input_int8;
                          param.filter = &filter_int8;
                          param.bias = nullptr;
                          param.fuse_relu = false;
                          param.paddings = std::vector<int>({padding, padding});
                          param.strides = std::vector<int>({stride, stride});
                          param.dilations =
                              std::vector<int>({dilation, dilation});
                          param.groups = group;
                          param.output = &output_int32_ref;
                          conv_compute_ref<int8_t, int>(param);

                          param.output = &output_int32;
                          std::unique_ptr<KernelContext> ctx(new KernelContext);
                          lite::arm::math::GemmLikeConvInt8<PRECISION(kInt32)>
                              int8gemm_int32;
                          int8gemm_int32.init(param, &ctx->As<ARMContext>());
                          int8gemm_int32.create(param, &ctx->As<ARMContext>());
                          int8gemm_int32.run(param);

S
Shixiaowei02 已提交
244 245 246 247
                          int* output_int32_data =
                              output_int32.mutable_data<int>();
                          int* output_int32_ref_data =
                              output_int32_ref.mutable_data<int>();
S
shixiaowei02 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

                          for (int i = 0; i < output_int32.dims().production();
                               i++) {
                            EXPECT_NEAR(output_int32_data[i],
                                        output_int32_ref_data[i], 1e-3);
                          }
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
TEST(conv_arm_int8, int8_fp32) {
  DeviceInfo::Init();
  for (auto n : {2}) {
    for (auto ic : {6}) {
      for (auto oc : {6}) {
        for (auto ih : {9}) {
          for (auto iw : {9}) {
            for (auto flag_bias : {false, true}) {
              for (auto flag_relu : {false, true}) {
                for (auto depthwise : {false, true}) {
                  for (auto dilation : {1}) {
                    for (auto stride : {1}) {
                      for (auto padding : {0}) {
                        for (auto ks : {1}) {
                          int group = 1;
                          if (depthwise) {  // depthwise convolution ?
                            group = oc = ic;
                          }

                          const int dks = dilation * (ks - 1) + 1;
                          int oh = (ih + 2 * padding - dks) / stride + 1;
                          int ow = (iw + 2 * padding - dks) / stride + 1;
                          std::vector<int64_t> input_shape = {n, ic, ih, iw};
                          std::vector<int64_t> filter_shape = {oc, ic / group,
                                                               ks, ks};
                          std::vector<int64_t> bias_shape({1, oc, 1, 1});
                          std::vector<int64_t> output_shape({n, oc, oh, ow});

                          Tensor input_fp32, input_int8;
                          Tensor filter_fp32, filter_int8;
                          Tensor bias_fp32, bias_int8;
                          Tensor output_int32_ref, output_int32;
                          Tensor output_fp32_ref, output_fp32;
                          Tensor output_int8_ref, output_int8;

                          input_fp32.Resize(input_shape);
                          input_int8.Resize(input_shape);
                          filter_fp32.Resize(filter_shape);
                          filter_int8.Resize(filter_shape);
                          bias_fp32.Resize(bias_shape);
                          bias_int8.Resize(bias_shape);
                          output_int32.Resize(output_shape);
                          output_int32_ref.Resize(output_shape);
                          output_fp32_ref.Resize(output_shape);
                          output_fp32.Resize(output_shape);
                          output_int8_ref.Resize(output_shape);
                          output_int8.Resize(output_shape);

                          float* input_fp32_data =
                              input_fp32.mutable_data<float>();
                          int8_t* input_int8_data =
                              input_int8.mutable_data<int8_t>();

                          float* filter_fp32_data =
                              filter_fp32.mutable_data<float>();
                          int8_t* filter_int8_data =
                              filter_int8.mutable_data<int8_t>();

                          float* bias_fp32_data =
                              bias_fp32.mutable_data<float>();
                          int8_t* bias_int8_data =
                              bias_int8.mutable_data<int8_t>();

                          for (int i = 0; i < input_fp32.dims().production();
                               i++) {
S
Shixiaowei02 已提交
333
                            input_fp32_data[i] = i % 10 * (i % 3 - 1);
334 335 336
                          }
                          for (int i = 0; i < filter_fp32.dims().production();
                               i++) {
S
Shixiaowei02 已提交
337
                            filter_fp32_data[i] = i % 10 * (i % 3 - 1);
338 339 340
                          }
                          for (int i = 0; i < bias_fp32.dims().production();
                               i++) {
S
Shixiaowei02 已提交
341
                            bias_fp32_data[i] = i % 10 * (i % 3 - 1);
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
                          }

                          std::vector<float> in_scale;
                          lite::arm::math::get_tensor_scale<PRECISION(kFloat)>(
                              input_fp32, &in_scale, -1, 127.f);
                          lite::arm::math::trans_tensor_fp32_to_int8(
                              &input_fp32, &input_int8, in_scale[0]);

                          std::vector<float> w_scale;
                          lite::arm::math::get_tensor_scale<PRECISION(kFloat)>(
                              filter_fp32, &w_scale, -1, 127.f);
                          int axis_size = oc;
                          int inner_size = ic / group * ks * ks;
                          w_scale = lite::arm::math::get_tensor_scale_n(
                              filter_fp32_data, axis_size, inner_size, 127.f);
                          lite::arm::math::fp32_to_int8(
                              filter_fp32_data, filter_int8_data,
                              w_scale.data(), axis_size, 1, inner_size);

                          operators::ConvParam param;
                          param.x = &input_int8;
                          param.filter = &filter_int8;
                          param.bias = &bias_int8;
                          param.fuse_relu = false;
                          param.paddings = std::vector<int>({padding, padding});
                          param.strides = std::vector<int>({stride, stride});
                          param.dilations =
                              std::vector<int>({dilation, dilation});
                          param.groups = group;
                          param.output = &output_int32_ref;
                          conv_compute_ref<int8_t, int>(param);

S
Shixiaowei02 已提交
374 375
                          int* output_int32_ref_data =
                              output_int32_ref.mutable_data<int>();
376 377 378 379 380 381 382 383 384 385 386 387

                          // ============ int8gemm_int32 ============
                          param.output = &output_int32;
                          std::unique_ptr<KernelContext> ctx_int32(
                              new KernelContext);
                          lite::arm::math::GemmLikeConvInt8<PRECISION(kInt32)>
                              int8gemm_int32;
                          int8gemm_int32.init(param,
                                              &ctx_int32->As<ARMContext>());
                          int8gemm_int32.create(param,
                                                &ctx_int32->As<ARMContext>());
                          int8gemm_int32.run(param);
S
Shixiaowei02 已提交
388 389
                          int* output_int32_data =
                              output_int32.mutable_data<int>();
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
                          for (int i = 0; i < output_int32.dims().production();
                               i++) {
                            EXPECT_NEAR(output_int32_data[i],
                                        output_int32_ref_data[i], 1e-3);
                          }

                          // ============ int8gemm_int8 ============
                          int8_t* output_int8_ref_data =
                              output_int8_ref.mutable_data<int8_t>();
                          lite::arm::math::trans_tensor_int32_to_int8(
                              &output_int32_ref, &output_int8_ref, in_scale[0],
                              1, w_scale);
                          param.output = &output_int8;
                          param.input_scale = in_scale[0];
                          param.output_scale = 1;
                          std::vector<float> w_scale_for_int8;
                          for (auto ws : w_scale) {
                            ws *= param.input_scale;
                            ws /= param.output_scale;
                            w_scale_for_int8.push_back(ws);
                          }
                          param.weight_scale = w_scale_for_int8;

                          std::unique_ptr<KernelContext> ctx_int8(
                              new KernelContext);
                          lite::arm::math::GemmLikeConvInt8<PRECISION(kInt8)>
                              int8gemm_int8;
                          int8gemm_int8.init(param,
                                             &ctx_int8->As<ARMContext>());
                          int8gemm_int8.create(param,
                                               &ctx_int8->As<ARMContext>());
                          int8gemm_int8.run(param);
                          int8_t* output_int8_data =
                              output_int8.mutable_data<int8_t>();
                          for (int i = 0; i < output_int8.dims().production();
                               i++) {
                            EXPECT_NEAR(output_int8_data[i],
                                        output_int8_ref_data[i], 1e-3);
                          }

                          // ============ int8gemm_float32 ============
                          float* output_fp32_ref_data =
                              output_fp32_ref.mutable_data<float>();
                          lite::arm::math::trans_tensor_int32_to_fp32(
                              &output_int32_ref, &output_fp32_ref, in_scale[0],
                              w_scale);
                          param.output = &output_fp32;
                          param.input_scale = in_scale[0];
                          param.output_scale = 1;
                          std::vector<float> w_scale_for_fp32;
                          for (auto ws : w_scale) {
                            ws *= param.input_scale;
                            w_scale_for_fp32.push_back(ws);
                          }
                          param.weight_scale = w_scale_for_fp32;

                          std::unique_ptr<KernelContext> ctx_fp32(
                              new KernelContext);
                          lite::arm::math::GemmLikeConvInt8<PRECISION(kFloat)>
                              int8gemm_fp32;
                          int8gemm_fp32.init(param,
                                             &ctx_fp32->As<ARMContext>());
                          int8gemm_fp32.create(param,
                                               &ctx_fp32->As<ARMContext>());
                          int8gemm_fp32.run(param);
                          float* output_fp32_data =
                              output_fp32.mutable_data<float>();
                          for (int i = 0; i < output_fp32.dims().production();
                               i++) {
                            EXPECT_NEAR(output_fp32_data[i],
                                        output_fp32_ref_data[i], 1e-3);
                          }
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}

T
tensor-tang 已提交
476 477
TEST(conv_arm, compute) {
  DeviceInfo::Init();
T
tensor-tang 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491
#if 1
  for (auto n : {2}) {
    for (auto ic : {6}) {
      for (auto oc : {6}) {
        for (auto ih : {9}) {
          for (auto iw : {9}) {
            for (auto flag_bias : {false, true}) {
              for (auto flag_relu : {false, true}) {
                for (auto depthwise : {false, true}) {
                  for (auto dilation : {1}) {
                    for (auto stride : {1, 2}) {
                      for (auto padding : {0, 1, 2}) {
                        for (auto ks : {1, 3, 5}) {
#else
T
tensor-tang 已提交
492
  for (auto n : {1, 2}) {
493 494 495 496 497 498
    for (auto ic : {6, 32 /*, 128*/}) {
      for (auto oc : {6, 32 /*, 128*/}) {
        for (auto ih : {9, 18 /*, 56 , 112, 224, 512*/}) {
          for (auto iw : {9, 18 /*, 56, 112, 224, 512*/}) {
            for (auto flag_bias : {false, true}) {
              for (auto flag_relu : {false, true}) {
T
tensor-tang 已提交
499
                for (auto depthwise : {false, true}) {
500
                  for (auto dilation : {1, 2}) {
T
tensor-tang 已提交
501
                    for (auto stride : {1, 2}) {
502 503
                      for (auto padding : {0, 1, 2}) {
                        for (auto ks : {1, 3, 5}) {
T
tensor-tang 已提交
504
#endif
T
tensor-tang 已提交
505
                          int group = 1;
506 507
                          if (depthwise) {  // depthwise convolution ?
                            group = oc = ic;
T
tensor-tang 已提交
508 509
                          }
                          // get input, filter and output shape
510 511 512
                          std::vector<int64_t> input_shape = {n, ic, ih, iw};
                          std::vector<int64_t> filter_shape = {oc, ic / group,
                                                               ks, ks};
513 514 515 516
                          const int dks = dilation * (ks - 1) + 1;
                          int oh = (ih + 2 * padding - dks) / stride + 1;
                          int ow = (iw + 2 * padding - dks) / stride + 1;
                          std::vector<int64_t> output_shape({n, oc, oh, ow});
T
tensor-tang 已提交
517
                          // resize input, filter and output
518 519 520 521 522
                          Tensor input;
                          Tensor filter;
                          Tensor bias;
                          Tensor output;
                          Tensor output_ref;
523 524 525 526
                          input.Resize(input_shape);
                          filter.Resize(filter_shape);
                          output.Resize(output_shape);
                          output_ref.Resize(output_shape);
T
Tensor Tang 已提交
527 528 529 530 531 532
                          VLOG(3) << "input: " << input.dims();
                          VLOG(3) << "filter: " << filter.dims()
                                  << " padding:" << padding
                                  << " stride:" << stride
                                  << " dilation:" << dilation;
                          VLOG(3) << "output: " << output.dims();
T
tensor-tang 已提交
533 534 535 536
                          auto* input_data = input.mutable_data<float>();
                          auto* filter_data = filter.mutable_data<float>();
                          auto* output_data = output.mutable_data<float>();
                          for (int i = 0; i < input.dims().production(); i++) {
537 538
                            float sign = i % 3 == 0 ? -1.0f : 1.0f;
                            input_data[i] = sign * static_cast<float>(i % 128);
T
tensor-tang 已提交
539 540
                          }
                          for (int i = 0; i < filter.dims().production(); i++) {
541 542 543
                            filter_data[i] =
                                i * 0.001f /
                                static_cast<float>(filter.dims().production());
T
tensor-tang 已提交
544
                          }
545 546 547 548 549 550
                          // prepare kernel params and run
                          ConvCompute conv;
                          std::unique_ptr<KernelContext> ctx(new KernelContext);
                          ctx->As<ARMContext>();
                          conv.SetContext(std::move(ctx));
                          operators::ConvParam param;
T
tensor-tang 已提交
551 552 553 554
                          param.x = &input;
                          param.filter = &filter;
                          param.output = &output;
                          param.bias = nullptr;
555 556 557 558 559 560 561 562
                          if (flag_bias) {
                            bias.Resize({oc});
                            auto* bias_data = bias.mutable_data<float>();
                            for (int i = 0; i < bias.dims().production(); i++) {
                              bias_data[i] = static_cast<float>(i);
                            }
                            param.bias = &bias;
                          }
563
                          param.fuse_relu = flag_relu;
T
tensor-tang 已提交
564 565 566 567 568 569
                          param.paddings = std::vector<int>({padding, padding});
                          param.strides = std::vector<int>({stride, stride});
                          param.dilations =
                              std::vector<int>({dilation, dilation});
                          param.groups = group;
                          conv.SetParam(param);
570 571
                          conv.Launch();
                          // invoking ref implementation and compare results
T
tensor-tang 已提交
572
                          param.output = &output_ref;
S
shixiaowei02 已提交
573
                          conv_compute_ref<float, float>(param);
574 575
                          auto* output_ref_data =
                              output_ref.mutable_data<float>();
T
tensor-tang 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
                          for (int i = 0; i < output.dims().production(); i++) {
                            EXPECT_NEAR(output_data[i], output_ref_data[i],
                                        1e-3);
                          }
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
T
tensor-tang 已提交
592 593 594 595 596 597 598
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

T
tensor-tang 已提交
599 600
USE_LITE_KERNEL(conv2d, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(depthwise_conv2d, kARM, kFloat, kNCHW, def);