elementwise_op.cc 12.1 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
    http://www.apache.org/licenses/LICENSE-2.0
N
nhzlx 已提交
8 9 10 11 12 13 14 15

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"
N
nhzlx 已提交
17 18 19 20 21

namespace paddle {
namespace inference {
namespace tensorrt {

22 23 24 25 26 27 28 29 30 31 32 33 34
static bool CheckDims(const nvinfer1::Dims& dims_x,
                      const nvinfer1::Dims& dims_y) {
  if (dims_x.nbDims != dims_y.nbDims) {
    return false;
  }
  for (int i = 0; i < dims_x.nbDims; i++) {
    if (dims_x.d[i] != dims_y.d[i]) {
      return false;
    }
  }
  return true;
}

N
nhzlx 已提交
35 36 37 38 39 40 41
class ElementwiseWeightOpConverter : public OpConverter {
 public:
  ElementwiseWeightOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
42
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
43
    framework::OpDesc op_desc(op, nullptr);
44
    VLOG(3) << "Convert a fluid elementwise op to TensorRT IScaleLayer";
N
nhzlx 已提交
45 46 47

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y_v = scope.FindVar(op_desc.Input("Y").front());
S
Shang Zhizhou 已提交
48 49 50
    PADDLE_ENFORCE_NOT_NULL(
        Y_v, platform::errors::NotFound("Variable %s not found in scope.",
                                        op_desc.Input("Y").front().c_str()));
N
nhzlx 已提交
51
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
52 53 54
    float* weight_data = nullptr;
    weight_data =
        engine_->GetWeightCPUData(op_desc.Input("Y").front(), Y_t, false);
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    nvinfer1::Dims dims_x = X->getDimensions();

    auto regist_eltwise_weight = [&](nvinfer1::ScaleMode scale_mode) {
      TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT,
                                           static_cast<void*>(weight_data),
                                           static_cast<size_t>(Y_t->numel())};
      TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
      TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
      if (op_type_ == "add") {
        nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Scale, *X, scale_mode, shift_weights.get(),
            scale_weights.get(), power_weights.get());
        layer = scale_layer;
      } else if (op_type_ == "mul") {
        nvinfer1::IScaleLayer* scale_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Scale, *X, scale_mode, scale_weights.get(),
            shift_weights.get(), power_weights.get());
        layer = scale_layer;
      }

      auto output_name = op_desc.Output("Out")[0];
      RreplenishLayerAndOutput(layer, "elementwise_" + op_type_, {output_name},
                               test_mode);
      if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
        CHECK(op_desc.HasAttr("X_scale"));
83
        float x_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        engine_->SetTensorDynamicRange(X, x_scale);
#endif
      }
    };

    if (engine_->with_dynamic_shape()) {
      if (Y_t->dims().size() == 1) {
        auto scale_mode = nvinfer1::ScaleMode::kCHANNEL;
        PADDLE_ENFORCE_EQ(Y_t->dims()[0], dims_x.d[1],
                          platform::errors::InvalidArgument(
                              "The Bias's size(%d) should be equal to the "
                              "first dim(%d) of the Input.",
                              Y_t->dims()[0], dims_x.d[1]));
        regist_eltwise_weight(scale_mode);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
100 101 102
            "The size of input bias's dims is %d, but TensorRT dynamic shape "
            "only support size = 1 for Elementwise op!",
            Y_t->dims().size()));
103 104 105 106 107 108 109 110 111
      }
      return;
    }

    std::vector<int> no_batch_dims;
    int start_index = 0;

    for (; start_index < dims_x.nbDims; start_index++)
      no_batch_dims.push_back(dims_x.d[start_index]);
N
nhzlx 已提交
112

N
nhzlx 已提交
113 114
    auto scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;

115
    std::vector<int> dims_y = framework::vectorize<int>(Y_t->dims());
116
    if (dims_y.size() == no_batch_dims.size() + 1) {
N
nhzlx 已提交
117 118 119
      if (dims_y[0] == 1) dims_y.erase(dims_y.begin());
    }

120
    if (dims_y.size() == 1 && dims_y[0] == no_batch_dims[0]) {
N
nhzlx 已提交
121
      scale_mode = nvinfer1::ScaleMode::kCHANNEL;
122 123
    } else if (dims_y.size() == no_batch_dims.size() &&
               dims_y[0] == no_batch_dims[0]) {
N
nhzlx 已提交
124
      scale_mode = nvinfer1::ScaleMode::kELEMENTWISE;
125 126
      for (size_t i = 1; i < no_batch_dims.size(); i++) {
        if (dims_y[i] != no_batch_dims[i]) {
N
nhzlx 已提交
127 128 129 130 131
          scale_mode = nvinfer1::ScaleMode::kCHANNEL;
          break;
        }
      }
      if (scale_mode == nvinfer1::ScaleMode::kCHANNEL) {
132
        for (size_t i = 1; i < no_batch_dims.size(); i++) {
N
nhzlx 已提交
133
          if (dims_y[i] != 1)
134 135 136 137
            PADDLE_THROW(platform::errors::InvalidArgument(
                "The bias's %d dim is %d, but TensorRT dynamic shape only "
                "support it equals to 1 for Elementwise op!",
                i, dims_y[i]));
N
nhzlx 已提交
138 139 140
        }
      }
    } else {
141 142 143 144 145 146 147 148 149 150 151
      if (dims_y.size() >= 1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The size of bias's dims is %d and bias's size is %d. TensorRT "
            "doesn't support this shape for Elementwise op!",
            dims_y.size(), dims_y[0]));
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The size of bias's dims is %d. TensorRT doesn't support "
            "this shape for Elementwise op!",
            dims_y.size()));
      }
N
nhzlx 已提交
152
    }
153
    regist_eltwise_weight(scale_mode);
N
nhzlx 已提交
154
  }
155 156 157

 protected:
  std::string op_type_;
N
nhzlx 已提交
158 159 160 161 162 163 164
};

class ElementwiseTensorOpConverter : public OpConverter {
 public:
  ElementwiseTensorOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
165
    auto op_pair = ops.find(op_type_);
166 167 168 169 170
    PADDLE_ENFORCE_NE(op_pair, ops.end(),
                      platform::errors::InvalidArgument(
                          "Elementwise op's type(%s) is not supported. Please "
                          "check if the op_type is correct.",
                          op_type_));
171

N
nhzlx 已提交
172 173 174
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);
175
    nvinfer1::ILayer* layer = nullptr;
N
nhzlx 已提交
176 177 178

    auto* X = engine_->GetITensor(op_desc.Input("X").front());
    auto* Y = engine_->GetITensor(op_desc.Input("Y").front());
179 180 181
    std::vector<nvinfer1::ITensor*> itensors;
    itensors.push_back(X);
    itensors.push_back(Y);
N
nhzlx 已提交
182 183 184
    nvinfer1::Dims dims_x = X->getDimensions();
    nvinfer1::Dims dims_y = Y->getDimensions();

185
    int axis = BOOST_GET_CONST(int, op_desc.GetAttr("axis"));
186
    auto output_name = op_desc.Output("Out")[0];
187 188 189 190 191 192 193

    auto common_func = [&](nvinfer1::ILayer* layer) {
      RreplenishLayerAndOutput(layer, "elementwise", {output_name}, test_mode);
      if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
        CHECK(op_desc.HasAttr("X_scale"));
        CHECK(op_desc.HasAttr("Y_scale"));
194 195
        float x_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
        float y_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Y_scale"));
196 197 198 199 200 201
        engine_->SetTensorDynamicRange(X, x_scale);
        engine_->SetTensorDynamicRange(Y, y_scale);
#endif
      }
    };

202 203 204
    if (CheckDims(dims_x, dims_y)) {
      // The two input tensor should have the same dims
      VLOG(3) << "Convert a fluid elementwise op to TensorRT IElementWiseLayer";
205 206
      nvinfer1::IElementWiseLayer* elet_layer =
          TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *X, *Y, op_pair->second);
N
nhzlx 已提交
207

208
      layer = elet_layer;
209 210 211
    } else {
      VLOG(3) << "Convert a fluid elementwise op to TensorRT "
                 "ElementWisePluginLayer";
212 213 214 215
      if (engine_->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        plugin::ElementwisePluginDynamic* plugin =
            new plugin::ElementwisePluginDynamic(op_type_, axis);
216
        layer = engine_->AddDynamicPlugin(itensors.data(), 2, plugin);
217 218 219 220
#else
        PADDLE_THROW(platform::errors::Fatal(
            "You are running the TRT Dynamic Shape mode, need to confirm that "
            "your TRT version is no less than 6.0"));
221
#endif
222 223 224 225 226 227 228 229 230 231 232
      } else {
        plugin::ElementWisePlugin* plugin =
            new plugin::ElementWisePlugin(op_type_, dims_x, dims_y, axis);
        plugin->AddInput(X);
        plugin->AddInput(Y);
        nvinfer1::IPluginLayer* plugin_layer = engine_->AddPlugin(
            plugin->GetInputs().data(), 2,
            reinterpret_cast<plugin::PluginTensorRT*>(plugin));

        layer = plugin_layer;
      }
N
nhzlx 已提交
233
    }
234
    common_func(layer);
N
nhzlx 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  }

 protected:
  static const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
      ops;
  std::string op_type_;
};

const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
    ElementwiseTensorOpConverter::ops = {
        {"add", nvinfer1::ElementWiseOperation::kSUM},
        {"mul", nvinfer1::ElementWiseOperation::kPROD},
        {"sub", nvinfer1::ElementWiseOperation::kSUB},
        {"div", nvinfer1::ElementWiseOperation::kDIV},
        {"min", nvinfer1::ElementWiseOperation::kMIN},
        {"pow", nvinfer1::ElementWiseOperation::kPOW},
        {"max", nvinfer1::ElementWiseOperation::kMAX},
};

254 255 256 257 258 259 260 261 262 263
class ElementwiseWeightAddOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseWeightMulOpConverter : public ElementwiseWeightOpConverter {
 public:
  ElementwiseWeightMulOpConverter() { op_type_ = "mul"; }
};

N
nhzlx 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
class ElementwiseTensorAddOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorAddOpConverter() { op_type_ = "add"; }
};

class ElementwiseTensorMulOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMulOpConverter() { op_type_ = "mul"; }
};

class ElementwiseTensorSubOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorSubOpConverter() { op_type_ = "sub"; }
};

class ElementwiseTensorDivOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorDivOpConverter() { op_type_ = "div"; }
};

class ElementwiseTensorMinOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMinOpConverter() { op_type_ = "min"; }
};

class ElementwiseTensorMaxOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorMaxOpConverter() { op_type_ = "max"; }
};

class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
 public:
  ElementwiseTensorPowOpConverter() { op_type_ = "pow"; }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

303 304 305 306
REGISTER_TRT_OP_CONVERTER(elementwise_add_weight,
                          ElementwiseWeightAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_weight,
                          ElementwiseWeightMulOpConverter);
N
nhzlx 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

REGISTER_TRT_OP_CONVERTER(elementwise_add_tensor,
                          ElementwiseTensorAddOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_sub_tensor,
                          ElementwiseTensorSubOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_div_tensor,
                          ElementwiseTensorDivOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_mul_tensor,
                          ElementwiseTensorMulOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_max_tensor,
                          ElementwiseTensorMaxOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_min_tensor,
                          ElementwiseTensorMinOpConverter);
REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
                          ElementwiseTensorPowOpConverter);