test_imperative_basic.py 26.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
21
from paddle.fluid import Linear
22
from paddle.fluid.layer_helper import LayerHelper
M
minqiyang 已提交
23
from test_imperative_base import new_program_scope
24
import paddle.fluid.dygraph_utils as dygraph_utils
25
from paddle.fluid.dygraph.layer_object_helper import LayerObjectHelper
26
import paddle
27 28


29
class MyLayer(fluid.Layer):
30 31
    def __init__(self):
        super(MyLayer, self).__init__()
32 33

    def forward(self, inputs):
M
minqiyang 已提交
34
        x = fluid.layers.relu(inputs)
35
        self._x_for_debug = x
X
Xin Pan 已提交
36 37 38
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
39 40


41
class MLP(fluid.Layer):
42 43
    def __init__(self, input_size):
        super(MLP, self).__init__()
S
songyouwei 已提交
44
        self._linear1 = None
45 46 47 48 49 50 51 52 53 54 55 56 57 58
        self._linear1 = Linear(
            input_size,
            3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
        self._linear2 = Linear(
            3,
            4,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
X
Xin Pan 已提交
59 60

    def forward(self, inputs):
61 62
        x = self._linear1(inputs)
        x = self._linear2(x)
X
Xin Pan 已提交
63 64 65 66
        x = fluid.layers.reduce_sum(x)
        return x


67
class SimpleRNNCell(fluid.Layer):
68 69
    def __init__(self, step_input_size, hidden_size, output_size, param_attr):
        super(SimpleRNNCell, self).__init__()
70 71 72
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
73 74
        self._dtype = core.VarDesc.VarType.FP32
        self.param_attr = param_attr
75 76 77 78

        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
S
songyouwei 已提交
79
        self._i2h_w = None
80 81
        self._i2h_w = self.create_parameter(
            attr=self.param_attr,
82 83 84
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
85 86
        self._h2h_w = self.create_parameter(
            attr=self.param_attr,
87 88 89
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
90 91
        self._h2o_w = self.create_parameter(
            attr=self.param_attr,
92 93 94 95 96
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):
97 98 99 100 101 102
        tmp_i2h = self.create_variable(dtype=self._dtype)
        tmp_h2h = self.create_variable(dtype=self._dtype)
        hidden = self.create_variable(dtype=self._dtype)
        out = self.create_variable(dtype=self._dtype)
        softmax_out = self.create_variable(dtype=self._dtype)
        reduce_out = self.create_variable(dtype=self._dtype)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
126
        hidden = self._helper.append_activation(hidden, act='tanh')
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
146
            attrs={'keep_dim': False,
147 148 149 150 151
                   'reduce_all': True})

        return reduce_out, hidden


152
class SimpleRNN(fluid.Layer):
153 154
    def __init__(self):
        super(SimpleRNN, self).__init__()
J
JiabinYang 已提交
155 156 157 158 159 160
        self.seq_len = 4
        self._cell = SimpleRNNCell(
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
161 162

    def forward(self, inputs):
J
JiabinYang 已提交
163
        outs = list()
J
JiabinYang 已提交
164 165
        pre_hiddens = list()

166
        init_hidden = self.create_parameter(
J
JiabinYang 已提交
167 168 169 170 171 172
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
173
        for i in range(self.seq_len):
J
JiabinYang 已提交
174 175 176
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
177 178
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
179

J
JiabinYang 已提交
180
        return outs, pre_hiddens
J
JiabinYang 已提交
181 182


M
minqiyang 已提交
183
class TestImperative(unittest.TestCase):
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    def test_functional_dygraph_context(self):
        self.assertFalse(fluid.dygraph.enabled())
        fluid.enable_dygraph()
        self.assertTrue(fluid.dygraph.enabled())
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        var_inp = fluid.dygraph.base.to_variable(np_inp)
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out1 = out.numpy()
        out.backward()
        dy_grad1 = mlp._linear1.weight.gradient()
        fluid.disable_dygraph()
        self.assertFalse(fluid.dygraph.enabled())
        with fluid.dygraph.guard():
            self.assertTrue(fluid.dygraph.enabled())
            var_inp = fluid.dygraph.base.to_variable(np_inp)
            mlp = MLP(input_size=2)
            out = mlp(var_inp)
            dy_out2 = out.numpy()
            out.backward()
            dy_grad2 = mlp._linear1.weight.gradient()
        self.assertFalse(fluid.dygraph.enabled())
        self.assertTrue(np.array_equal(dy_out1, dy_out2))
207 208 209
        self.assertTrue(np.array_equal(dy_grad1, dy_grad2))

    def test_functional_paddle_imperative_dygraph_context(self):
210 211 212
        self.assertFalse(paddle.in_dynamic_mode())
        paddle.disable_static()
        self.assertTrue(paddle.in_dynamic_mode())
213
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
Z
Zhou Wei 已提交
214
        var_inp = paddle.to_tensor(np_inp)
215 216 217 218 219
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out1 = out.numpy()
        out.backward()
        dy_grad1 = mlp._linear1.weight.gradient()
220 221 222 223
        paddle.enable_static()
        self.assertFalse(paddle.in_dynamic_mode())
        paddle.disable_static()
        self.assertTrue(paddle.in_dynamic_mode())
Z
Zhou Wei 已提交
224
        var_inp = paddle.to_tensor(np_inp)
225 226 227 228 229 230 231
        mlp = MLP(input_size=2)
        out = mlp(var_inp)
        dy_out2 = out.numpy()
        out.backward()
        dy_grad2 = mlp._linear1.weight.gradient()
        paddle.enable_static()
        self.assertFalse(paddle.in_dynamic_mode())
232
        self.assertTrue(np.array_equal(dy_out1, dy_out2))
233 234
        self.assertTrue(np.array_equal(dy_grad1, dy_grad2))

235 236 237 238 239 240 241 242 243 244 245
    def test_isinstance(self):
        var = fluid.layers.data(shape=[1], name='x', dtype='float32')
        self.assertTrue(isinstance(var, fluid.Variable))
        with fluid.dygraph.guard():
            var_base = fluid.dygraph.base.to_variable(np.array([3, 4, 5]))
            self.assertTrue(isinstance(var_base, core.VarBase))
            self.assertTrue(isinstance(var_base, fluid.Variable))

    def test_create_VarBase(self):
        x = np.ones([2, 2], np.float32)
        y = np.zeros([3, 3], np.float32)
246 247
        t = fluid.Tensor()
        t.set(x, fluid.CPUPlace())
248 249 250 251 252 253
        with fluid.dygraph.guard():
            tmp = fluid.core.VarBase(value=x, place=fluid.core.CPUPlace())
            tmp2 = fluid.core.VarBase(y, fluid.core.CPUPlace())
            tmp3 = fluid.dygraph.base.to_variable(x)
            tmp4 = fluid.core.VarBase(y)
            tmp5 = fluid.core.VarBase(value=x)
254
            tmp6 = fluid.core.VarBase(t)
255 256 257 258 259 260

            self.assertTrue(np.array_equal(x, tmp.numpy()))
            self.assertTrue(np.array_equal(y, tmp2.numpy()))
            self.assertTrue(np.array_equal(x, tmp3.numpy()))
            self.assertTrue(np.array_equal(y, tmp4.numpy()))
            self.assertTrue(np.array_equal(x, tmp5.numpy()))
261
            self.assertTrue(np.array_equal(x, tmp6.numpy()))
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    def test_no_grad_guard(self):
        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)
            self.assertTrue(l0.weight._grad_ivar() is None)
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                self.assertTrue(l1.weight.stop_gradient is False)
                tmp = l1.weight * 2
                self.assertTrue(tmp.stop_gradient)
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()

            self.assertTrue(tmp._grad_ivar() is None)
            self.assertTrue(l0.weight._grad_ivar() is not None)

281 282 283 284 285 286
    def test_paddle_imperative_no_grad_guard(self):
        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)
            self.assertTrue(l0.weight._grad_ivar() is None)
            l1 = fluid.Linear(2, 2)
287
            with paddle.no_grad():
288 289
                self.assertTrue(l1.weight.stop_gradient is False)
                tmp = l1.weight * 2
290 291
                print(tmp)
                self.assertFalse(tmp.stop_gradient)
292 293 294 295 296
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()

297
            self.assertTrue(tmp._grad_ivar() is not None)
298 299
            self.assertTrue(l0.weight._grad_ivar() is not None)

M
minqiyang 已提交
300 301
    def test_sum_op(self):
        x = np.ones([2, 2], np.float32)
L
lujun 已提交
302
        with fluid.dygraph.guard():
M
minqiyang 已提交
303 304
            inputs = []
            for _ in range(10):
305 306 307
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs.append(tmp)
M
minqiyang 已提交
308 309
            ret = fluid.layers.sums(inputs)
            loss = fluid.layers.reduce_sum(ret)
L
lujun 已提交
310
            loss.backward()
311 312 313
        with fluid.dygraph.guard():
            inputs2 = []
            for _ in range(10):
314 315 316
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs2.append(tmp)
317 318
            ret2 = fluid.layers.sums(inputs2)
            loss2 = fluid.layers.reduce_sum(ret2)
319 320
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            loss2.backward()
321

322 323
            self.assertTrue(np.allclose(ret.numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0].gradient(), x))
324 325 326
            self.assertTrue(np.allclose(ret2.numpy(), x * 10))
            a = inputs2[0].gradient()
            self.assertTrue(np.allclose(inputs2[0].gradient(), x))
M
minqiyang 已提交
327

328 329 330 331 332 333 334 335 336
    def test_empty_var(self):
        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.numpy()
            except Exception as e:
337
                assert type(e) == ValueError
338 339 340 341

            try:
                new_variable.backward()
            except Exception as e:
342
                assert type(e) == core.EnforceNotMet
343 344 345 346

            try:
                new_variable.clear_gradient()
            except Exception as e:
347
                assert type(e) == core.EnforceNotMet
348 349 350 351 352 353 354 355 356 357 358 359 360

    def test_empty_grad(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            try:
                new_var.gradient()
            except Exception as e:
                assert type(e) == ValueError

            try:
                new_var.clear_gradient()
            except Exception as e:
361
                assert type(e) == core.EnforceNotMet
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.gradient()
            except Exception as e:
                assert type(e) == ValueError

    def test_set_persistable(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            self.assertFalse(new_var.persistable)
            new_var.persistable = True
379
            self.assertTrue(new_var.persistable)
380

M
minqiyang 已提交
381
    def test_layer(self):
L
lujun 已提交
382
        with fluid.dygraph.guard():
M
minqiyang 已提交
383 384
            cl = core.Layer()
            cl.forward([])
385
            l = fluid.Layer("l")
M
minqiyang 已提交
386 387 388 389
            self.assertRaises(NotImplementedError, l.forward, [])

    def test_layer_in_out(self):
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
L
lujun 已提交
390 391
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
392
            var_inp.stop_gradient = False
393
            l = MyLayer()
M
minqiyang 已提交
394 395
            x = l(var_inp)[0]
            self.assertIsNotNone(x)
396
            dy_out = x.numpy()
L
lujun 已提交
397
            x.backward()
398
            dy_grad = l._x_for_debug.gradient()
M
minqiyang 已提交
399

400 401
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
402
            var_inp2.stop_gradient = False
403
            l2 = MyLayer()
404 405 406
            x2 = l2(var_inp2)[0]
            self.assertIsNotNone(x2)
            dy_out2 = x2.numpy()
407 408
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            x2.backward()
409 410
            dy_grad2 = l2._x_for_debug.gradient()

M
minqiyang 已提交
411 412 413
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
414
            l = MyLayer()
M
minqiyang 已提交
415 416 417 418 419 420 421 422 423 424 425 426
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
427 428
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
429 430 431

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
L
lujun 已提交
432 433
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
434
            mlp = MLP(input_size=2)
M
minqiyang 已提交
435
            out = mlp(var_inp)
436
            dy_out = out.numpy()
L
lujun 已提交
437
            out.backward()
438
            dy_grad = mlp._linear1.weight.gradient()
M
minqiyang 已提交
439

440 441
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
442
            mlp2 = MLP(input_size=2)
443 444
            out2 = mlp2(var_inp2)
            dy_out2 = out2.numpy()
445 446
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            out2.backward()
447
            dy_grad2 = mlp2._linear1.weight.gradient()
448

M
minqiyang 已提交
449 450 451
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
452
            mlp = MLP(input_size=2)
M
minqiyang 已提交
453 454
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
455
                out, parameter_list=[mlp._linear1.weight.name])[0]
M
minqiyang 已提交
456 457 458 459 460 461 462 463 464 465
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
466 467
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
468 469

        params = mlp.parameters(True)
470 471 472 473
        self.assertEqual("linear_0.w_0", params[0].name)
        self.assertEqual("linear_0.b_0", params[1].name)
        self.assertEqual("linear_1.w_0", params[2].name)
        self.assertEqual("linear_1.b_0", params[3].name)
M
minqiyang 已提交
474 475 476
        self.assertEqual(len(params), 4)

        sublayers = mlp.sublayers(True)
477 478
        self.assertEqual(mlp._linear1, sublayers[0])
        self.assertEqual(mlp._linear2, sublayers[1])
M
minqiyang 已提交
479 480
        self.assertEqual(len(sublayers), 2)

X
Xin Pan 已提交
481
    def test_dygraph_vs_static(self):
482 483
        np_inp1 = np.random.rand(4, 3, 3)
        np_inp2 = np.random.rand(4, 3, 3)
X
Xin Pan 已提交
484 485 486

        # dynamic graph
        with fluid.dygraph.guard():
487 488 489
            inp1 = fluid.dygraph.to_variable(np_inp1)
            inp2 = fluid.dygraph.to_variable(np_inp2)
            if np.sum(np_inp1) < np.sum(np_inp2):
X
Xin Pan 已提交
490 491 492
                x = fluid.layers.elementwise_add(inp1, inp2)
            else:
                x = fluid.layers.elementwise_sub(inp1, inp2)
L
lujun 已提交
493
            dygraph_result = x.numpy()
X
Xin Pan 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

        # static graph
        with new_program_scope():
            inp_data1 = fluid.layers.data(
                name='inp1', shape=[3, 3], dtype=np.float32)
            inp_data2 = fluid.layers.data(
                name='inp2', shape=[3, 3], dtype=np.float32)

            a = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1])
            b = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1])
            cond = fluid.layers.less_than(x=a, y=b)

            ie = fluid.layers.IfElse(cond)
            with ie.true_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_add(d1, d2)
                ie.output(d3)

            with ie.false_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_sub(d1, d2)
                ie.output(d3)
            out = ie()

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            static_result = exe.run(fluid.default_main_program(),
527 528
                                    feed={'inp1': np_inp1,
                                          'inp2': np_inp2},
X
Xin Pan 已提交
529 530 531
                                    fetch_list=out)[0]
        self.assertTrue(np.allclose(dygraph_result, static_result))

M
minqiyang 已提交
532 533 534 535 536
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
L
lujun 已提交
537 538
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
539
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
540
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
541
            outs, pre_hiddens = simple_rnn.forward(var_inp)
542
            dy_out = outs[3].numpy()
L
lujun 已提交
543
            outs[3].backward()
544 545 546
            dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()
M
minqiyang 已提交
547

548 549 550
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3])
551
            simple_rnn2 = SimpleRNN()
552 553
            outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2)
            dy_out2 = outs2[3].numpy()
554 555
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            outs2[3].backward()
556 557 558 559
            dy_grad_h2o2 = simple_rnn2._cell._h2o_w.gradient()
            dy_grad_h2h2 = simple_rnn2._cell._h2h_w.gradient()
            dy_grad_i2h2 = simple_rnn2._cell._i2h_w.gradient()

M
minqiyang 已提交
560 561 562
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
563
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
564 565 566 567 568 569 570 571 572 573
            outs, pre_hiddens = simple_rnn(inp)
            param_grads = fluid.backward.append_backward(outs[3])
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])
574

M
minqiyang 已提交
575 576 577 578
        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
579 580 581 582
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o2, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h2, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h2, static_grad_i2h))
M
minqiyang 已提交
583

584 585 586 587 588 589 590
    def test_layer_attrs(self):
        layer = fluid.dygraph.Layer("test")
        layer.test_attr = 1
        self.assertFalse(hasattr(layer, "whatever"))
        self.assertTrue(hasattr(layer, "test_attr"))
        self.assertEqual(layer.test_attr, 1)

591 592 593 594 595 596 597 598 599 600 601 602 603
        my_layer = MyLayer()
        my_layer.w1 = my_layer.create_parameter([3, 3])
        my_layer.add_parameter('w2', None)
        self.assertEqual(len(my_layer.parameters()), 1)
        self.assertRaises(TypeError, my_layer.__setattr__, 'w1', 'str')
        my_layer.w1 = None
        self.assertEqual(len(my_layer.parameters()), 0)
        my_layer.l1 = fluid.dygraph.Linear(3, 3)
        self.assertEqual(len(my_layer.sublayers()), 1)
        self.assertRaises(TypeError, my_layer.__setattr__, 'l1', 'str')
        my_layer.l1 = None
        self.assertEqual(len(my_layer.sublayers()), 0)

604

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
class TestDygraphUtils(unittest.TestCase):
    def test_append_activation_in_dygraph_exception(self):
        with new_program_scope():
            np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
            a = fluid.layers.data("a", [10, 20])
            func = dygraph_utils._append_activation_in_dygraph
            self.assertRaises(AssertionError, func, a, act="sigmoid")

    def test_append_activation_in_dygraph1(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_activation_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="hard_sigmoid")
            res2 = fluid.layers.hard_sigmoid(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

    def test_append_activation_in_dygraph2(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_activation_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="sigmoid", use_mkldnn=True, use_cudnn=True)
            res2 = fluid.layers.sigmoid(a)
629
            self.assertTrue(np.allclose(res1.numpy(), res2.numpy()))
630

631 632 633 634 635 636 637 638 639 640
    def test_append_activation_in_dygraph3(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        helper = LayerObjectHelper(fluid.unique_name.generate("test"))
        func = helper.append_activation
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="sigmoid", use_cudnn=True)
            res2 = fluid.layers.sigmoid(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
    def test_append_activation_in_dygraph_use_mkldnn(self):
        a_np = np.random.uniform(-2, 2, (10, 20, 30)).astype(np.float32)
        helper = LayerHelper(
            fluid.unique_name.generate("test"), act="relu", use_mkldnn=True)
        func = helper.append_activation
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a)
            res2 = fluid.layers.relu(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

    def test_append_activation_in_dygraph_global_use_mkldnn(self):
        a_np = np.random.uniform(-2, 2, (10, 20, 30)).astype(np.float32)
        helper = LayerHelper(fluid.unique_name.generate("test"), act="relu")
        func = helper.append_activation
656
        with fluid.dygraph.guard(fluid.core.CPUPlace()):
657 658 659 660 661 662 663 664 665
            a = fluid.dygraph.to_variable(a_np)
            fluid.set_flags({'FLAGS_use_mkldnn': True})
            try:
                res1 = func(a)
            finally:
                fluid.set_flags({'FLAGS_use_mkldnn': False})
            res2 = fluid.layers.relu(a)
        self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
    def test_append_bias_in_dygraph_exception(self):
        with new_program_scope():
            np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
            a = fluid.layers.data("a", [10, 20])
            func = dygraph_utils._append_bias_in_dygraph
            self.assertRaises(AssertionError, func, a)

    def test_append_bias_in_dygraph(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_bias_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, bias=a)
            res2 = a + a
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))


683 684 685 686 687 688 689 690 691
class TestDygraphGuardWithError(unittest.TestCase):
    def test_without_guard(self):
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(np.zeros([10, 10]))
        with self.assertRaisesRegexp(TypeError,
                                     "Please use `with fluid.dygraph.guard()"):
            y = fluid.layers.matmul(x, x)


692
if __name__ == '__main__':
693
    paddle.enable_static()
694
    unittest.main()