lookup_table_op.cu 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include "paddle/framework/eigen.h"
16
#include "paddle/framework/op_registry.h"
17
#include "paddle/operators/lookup_table_op.h"
18 19 20 21 22 23
#include "paddle/platform/assert.h"
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {

24
template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
25 26
__global__ void LookupTable(T* output, const T* table, const int64_t* ids,
                            const int64_t N, const int64_t K, const int64_t D) {
27
  int idx = threadIdx.x;
28
  int idy = blockIdx.x + threadIdx.y * GridDimX;
29 30

  while (idy < K) {
31
    int64_t id = ids[idy];
32 33
    PADDLE_ASSERT(id >= 0);
    PADDLE_ASSERT(id < N);
D
dangqingqing 已提交
34 35
    T* out = output + idy * D;
    const T* tab = table + id * D;
36
    for (int i = idx; i < D; i += BlockDimX) {
37 38
      out[i] = tab[i];
    }
39
    idy += BlockDimY * GridDimX;
40 41 42
  }
}

43
template <typename T, int BlockDimX, int BlockDimY, int GridDimX>
44 45 46
__global__ void LookupTableGrad(T* table, const T* output, const int64_t* ids,
                                const int64_t N, const int64_t K,
                                const int64_t D) {
47
  int idx = threadIdx.x;
48
  int idy = blockIdx.x + threadIdx.y * GridDimX;
49 50 51 52 53

  while (idy < K) {
    int id = ids[idy];
    PADDLE_ASSERT(id >= 0);
    PADDLE_ASSERT(id < N);
D
dangqingqing 已提交
54 55
    const T* out = output + idy * D;
    T* tab = table + id * D;
56
    for (int i = idx; i < D; i += BlockDimX) {
D
dangqingqing 已提交
57
      paddle::platform::CudaAtomicAdd(&tab[i], out[i]);
58
    }
59
    idy += BlockDimY * GridDimX;
60 61 62 63
  }
}

template <typename T>
Y
Yu Yang 已提交
64
class LookupTableCUDAKernel : public framework::OpKernel<T> {
65 66
 public:
  void Compute(const framework::ExecutionContext& context) const override {
F
fengjiayi 已提交
67 68 69
    auto* table_t = context.Input<LoDTensor>("W");
    auto* ids_t = context.Input<LoDTensor>("Ids");
    auto* output_t = context.Output<LoDTensor>("Out");
70 71 72

    size_t N = table_t->dims()[0];
    size_t D = table_t->dims()[1];
73
    size_t K = ids_t->numel();
F
fengjiayi 已提交
74 75 76
    auto* ids = ids_t->data<int64_t>();
    auto* table = table_t->data<T>();
    auto* output = output_t->mutable_data<T>(context.GetPlace());
77 78 79

    dim3 threads(128, 8);
    dim3 grids(8, 1);
T
update  
typhoonzero 已提交
80 81 82
    LookupTable<
        T, 128, 8,
        8><<<grids, threads, 0, context.cuda_device_context().stream()>>>(
T
typhoonzero 已提交
83
        output, table, ids, N, K, D);
84 85 86 87
  }
};

template <typename T>
Y
Yu Yang 已提交
88
class LookupTableGradCUDAKernel : public framework::OpKernel<T> {
89 90
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Q
QI JUN 已提交
91 92
    auto& dev_ctx =
        context.template device_context<platform::CUDADeviceContext>();
93 94
    bool is_sparse = context.Attr<bool>("is_sparse");
    if (is_sparse) {
F
fengjiayi 已提交
95 96 97
      auto* ids = context.Input<LoDTensor>("Ids");
      auto* table = context.Input<LoDTensor>("W");
      auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
98 99 100 101 102
      auto* d_table = context.Output<SelectedRows>(framework::GradVarName("W"));

      auto* ids_data = ids->data<int64_t>();
      auto ids_dim = ids->dims();

Q
QI JUN 已提交
103
      auto stream = dev_ctx.stream();
104 105 106
      // copy GPU memory to CPU pinned memory
      framework::Vector<int64_t> new_rows;
      new_rows.resize(ids_dim[0]);
D
dzhwinter 已提交
107
      auto gpu_place = boost::get<platform::CUDAPlace>(context.GetPlace());
108 109 110 111 112 113 114 115 116 117 118 119 120 121

      memory::Copy(platform::CPUPlace(), new_rows.data(), gpu_place, ids_data,
                   ids_dim[0] * sizeof(int64_t), stream);

      d_table->set_rows(new_rows);

      auto* d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_dim[0], table->dims()[1]});
      d_table_value->mutable_data<T>(context.GetPlace());

      auto* d_table_data = d_table_value->data<T>();
      auto* d_output_data = d_output->data<T>();
      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
      memory::Copy(gpu_place, d_table_data, gpu_place, d_output_data,
122
                   d_output->numel() * sizeof(T), stream);
123 124

    } else {
F
fengjiayi 已提交
125 126 127
      auto ids_t = context.Input<LoDTensor>("Ids");
      auto d_output_t = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto d_table_t = context.Output<LoDTensor>(framework::GradVarName("W"));
128 129 130 131 132 133 134 135 136

      int N = d_table_t->dims()[0];
      int D = d_table_t->dims()[1];
      int K = ids_t->numel();
      const int64_t* ids = ids_t->data<int64_t>();
      const T* d_output = d_output_t->data<T>();
      T* d_table = d_table_t->mutable_data<T>(context.GetPlace());

      auto t = framework::EigenVector<T>::Flatten(*d_table_t);
Q
QI JUN 已提交
137
      t.device(*dev_ctx.eigen_device()) = t.constant(static_cast<T>(0));
138 139 140

      dim3 threads(128, 8);
      dim3 grids(8, 1);
Q
QI JUN 已提交
141
      LookupTableGrad<T, 128, 8, 8><<<grids, threads, 0, dev_ctx.stream()>>>(
T
typhoonzero 已提交
142
          d_table, d_output, ids, N, K, D);
143
    }
144 145 146 147 148 149 150
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Q
QI JUN 已提交
151 152 153 154 155
REGISTER_OP_CUDA_KERNEL(lookup_table, ops::LookupTableCUDAKernel<float>,
                        ops::LookupTableCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(lookup_table_grad,
                        ops::LookupTableGradCUDAKernel<float>,
                        ops::LookupTableGradCUDAKernel<double>);