dequantize_mkldnn_op.cc 5.0 KB
Newer Older
X
xiaoli.liu@intel.com 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/dequantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
20
#include "paddle/fluid/platform/mkldnn_reuse.h"
X
xiaoli.liu@intel.com 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
using mkldnn::stream;
using platform::GetMKLDNNFormat;

34 35 36 37 38 39 40 41 42 43 44 45
std::string CreateKey(const paddle::framework::ExecutionContext& ctx,
                      const mkldnn::memory::data_type& src_dt,
                      const std::vector<int>& src_tz, const float scale_data) {
  std::string key;
  key.reserve(platform::MKLDNNHandler::MaxKeyLength);
  platform::MKLDNNHandler::AppendKey(&key, std::to_string(src_dt));
  platform::MKLDNNHandler::AppendKeyDims(&key, src_tz);
  platform::MKLDNNHandler::AppendKey(&key, std::to_string(scale_data));
  platform::MKLDNNHandler::AppendKey(&key, ctx.op().Output("Output"));
  return key;
}

X
xiaoli.liu@intel.com 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
template <typename T>
class DeQuantOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto scale_data = ctx.Attr<float>("Scale");
    auto* output = ctx.Output<Tensor>("Output");
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& engine = dev_ctx.GetEngine();

    const T* input_data = input->data<T>();
    float* output_data = output->mutable_data<float>(ctx.GetPlace());
    std::vector<float> reorder_scale = {1.0f / scale_data};

    std::vector<primitive> pipeline;
    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
66
    MKLDNNMemoryFormat src_fmt = input->format();
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    std::string key = CreateKey(ctx, src_dt, src_tz, reorder_scale[0]);
    const std::string key_prim = key + "@reorder_p";
    const std::string key_src_mem = key + "@src_mem";
    const std::string key_dst_mem = key + "@dst_mem";

    std::shared_ptr<mkldnn::memory> src_memory;
    std::shared_ptr<mkldnn::memory> dst_memory;
    std::shared_ptr<reorder> reorder_p;
    reorder_p = std::static_pointer_cast<reorder>(dev_ctx.GetBlob(key_prim));

    if (reorder_p == nullptr) {
      mkldnn::primitive_attr attri;
      int mask = 0;
      attri.set_output_scales(mask, reorder_scale);

      auto src_md = platform::MKLDNNMemDesc({src_tz}, src_dt, src_fmt);
      auto src_pd = mkldnn::memory::primitive_desc(src_md, engine);
      src_memory =
          std::make_shared<mkldnn::memory>(src_pd, to_void_cast<T>(input_data));
      std::shared_ptr<primitive::at> src_memory_p =
          std::shared_ptr<primitive::at>(new primitive::at(*src_memory));

      auto dst_md = platform::MKLDNNMemDesc({dst_tz}, memory::data_type::f32,
90
                                            MKLDNNMemoryFormat::nchw);
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
      auto dst_pd = mkldnn::memory::primitive_desc(dst_md, engine);
      dst_memory = std::make_shared<mkldnn::memory>(
          dst_pd, to_void_cast<float>(output_data));

      auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
          new reorder::primitive_desc(src_pd, dst_pd, attri));
      reorder_p = std::shared_ptr<reorder>(
          new reorder(*reorder_pd, *src_memory_p, *dst_memory));
      dev_ctx.SetBlob(key_prim, reorder_p);
      dev_ctx.SetBlob(key_src_mem, src_memory);
      dev_ctx.SetBlob(key_dst_mem, dst_memory);
    } else {
      src_memory = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(key_src_mem));
      src_memory->set_data_handle(to_void_cast<T>(input_data));

      dst_memory = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(key_dst_mem));
      dst_memory->set_data_handle(output->mutable_data<float>(ctx.GetPlace()));
    }
X
xiaoli.liu@intel.com 已提交
111 112 113 114

    pipeline.push_back(*reorder_p);
    stream(stream::kind::eager).submit(pipeline).wait();

115
    output->set_format(GetMKLDNNFormat(*dst_memory));
X
xiaoli.liu@intel.com 已提交
116 117 118 119 120 121 122 123 124 125
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(dequantize, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::DeQuantOpKernel<uint8_t>, ops::DeQuantOpKernel<int8_t>);