CrossEntropyOverBeam.cpp 13.0 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "CrossEntropyOverBeam.h"

namespace paddle {

C
caoying03 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
void CostForOneSequence::calValidExpandStep() {
  validExpansionCount_ = 0;
  goldAsExtraPath_ = true;

  for (size_t i = 0; i < beams_->expansionCount; ++i) {
    real gold = static_cast<real>(beams_->gold[i]);
    if (i) {
      real* start = beams_->candidateIds[i - 1]->getData();
      goldRowIds_[i] = std::count_if(
          start,
          start + goldRowIds_[i - 1] * beamSize_ + goldColIds_[i - 1],
          [](const real& val) { return val != -1.; });
    } else
      goldRowIds_[i] = 0;

    real* start =
        beams_->candidateIds[i]->getData() + goldRowIds_[i] * beamSize_;
    real* findEnd = std::find(start, start + beamSize_, gold);
    validExpansionCount_++;

    if (start + beamSize_ == findEnd) return;
    goldColIds_[i] = findEnd - start;
  }

  if (goldColIds_[beams_->expansionCount - 1] != -1) goldAsExtraPath_ = false;
}

size_t CostForOneSequence::initLastExpansion() {
  int beamId = validExpansionCount_ - 1;
  const MatrixPtr candidates = beams_->candidateIds[beamId];
  size_t height = candidates->getHeight();

  /* initialization the last expansion. */
  size_t pathCount = std::count_if(candidates->getData(),
                                   candidates->getData() + height * beamSize_,
                                   [](const real& val) { return val != -1; });
  /*
   * if the gold sequence falls off the beam during search,
   * add the gold sequence as the last path into all expanded paths.
   */
  if (goldAsExtraPath_) goldIdsInFinalExpansion_ = pathCount++;

  pathRowIdsInEachBeam_.clear();
  pathRowIdsInEachBeam_.resize(validExpansionCount_,
                               std::vector<int>(pathCount, 0));
  parentIdsInBeam_.clear();
  parentIdsInBeam_.resize(pathCount, 0);

  if (goldAsExtraPath_) {
    /* add gold sequence into the total expansion. */
    pathRowIdsInEachBeam_[beamId].back() =
        beams_->gold[beamId] +
        getSeqStartPos(beamId, goldRowIds_[validExpansionCount_ - 1]);
    parentIdsInBeam_.back() = goldRowIds_[validExpansionCount_ - 1];
  } else {
    size_t goldOffset = goldRowIds_[beamId] * beamSize_ + goldColIds_[beamId];
    goldIdsInFinalExpansion_ =
        std::count_if(candidates->getData(),
                      candidates->getData() + goldOffset,
                      [](const real& val) { return val != -1.; });
  }

  /*
   * TODO(caoying): fix this, store the indices of selected candidate
   * paths into Argument.ids
   */
  real* ids = candidates->getData();
  size_t curIdx = 0;
  for (size_t i = 0; i < height; ++i) {
    int basePos = getSeqStartPos(beamId, i);
    for (size_t j = 0; j < beamSize_; ++j) {
      int id = ids[i * beamSize_ + j];
      if (id == -1) continue;
      pathRowIdsInEachBeam_[beamId][curIdx] = id + basePos;
      parentIdsInBeam_[curIdx++] = i;
    }
  }
  return pathCount;
}

void CostForOneSequence::constructTotalExpansion() {
  /*
   * construct the entire expanded beam by begining with the last search
   * in which gold falls off the beam.
   */
  size_t totalPathCount = initLastExpansion();

  for (int beamId = validExpansionCount_ - 2; beamId >= 0; --beamId) {
    const MatrixPtr candidates = beams_->candidateIds[beamId];
    real* ids = candidates->getData();

    int lastParentIdInBeam = -1;
    int basePos = -1;
    for (size_t i = 0;
         i < (goldAsExtraPath_ ? totalPathCount - 1 : totalPathCount);
         ++i) {
      int id = ids[parentIdsInBeam_[i]];
      int parentRowId = std::div(parentIdsInBeam_[i], beamSize_).quot;
      if (parentIdsInBeam_[i] != lastParentIdInBeam)
        basePos = getSeqStartPos(beamId, parentRowId);

      pathRowIdsInEachBeam_[beamId][i] = id + basePos;
      lastParentIdInBeam = parentIdsInBeam_[i];
      parentIdsInBeam_[i] = parentRowId;

      if (goldAsExtraPath_)
        pathRowIdsInEachBeam_[beamId][totalPathCount - 1] =
            beams_->gold[beamId] + getSeqStartPos(beamId, goldRowIds_[beamId]);
    }
  }
}

real CostForOneSequence::globallyNormalizedScore() {
  expandedPathScores_.resize(validExpansionCount_);

  Matrix::resizeOrCreate(
      softmaxOut_, 1, pathRowIdsInEachBeam_[0].size(), false, false);
  softmaxOut_->zero();
  MatrixPtr tmp = Matrix::create(
      softmaxOut_->getData(), softmaxOut_->getWidth(), 1, false, false);

  for (size_t i = 0; i < validExpansionCount_; ++i) {
    Matrix::resizeOrCreate(expandedPathScores_[i],
                           pathRowIdsInEachBeam_[i].size(),
                           1,
                           false,
                           false);
    IVectorPtr rowIds = IVector::create(pathRowIdsInEachBeam_[i].data(),
                                        pathRowIdsInEachBeam_[i].size(),
                                        false);
    expandedPathScores_[i]->selectRows(*(beams_->scores[i]), *rowIds);
    tmp->add(*expandedPathScores_[i]);
  }

  softmaxOut_->softmax(*softmaxOut_);
  return -std::log(softmaxOut_->getData()[goldIdsInFinalExpansion_]);
}

real CostForOneSequence::forward() {
  calValidExpandStep();
  constructTotalExpansion();
  return globallyNormalizedScore();
}

void CostForOneSequence::backward() {
C
caoying03 已提交
164 165 166 167 168 169 170 171 172
  /*
   * when softmax layer is the output layer, and it is combined with
   * cross-entropy as cost. The derivate with regard to softmax's input
   * is simply:
   *
   * grad_i = softmax_out_i - target_i,
   *
   * and here hard label is used.
   */
C
caoying03 已提交
173
  softmaxOut_->getData()[goldIdsInFinalExpansion_] -= 1.;
C
caoying03 已提交
174

C
caoying03 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  MatrixPtr tmp = Matrix::create(
      softmaxOut_->getData(), softmaxOut_->getWidth(), 1, false, false);

  for (size_t i = 0; i < validExpansionCount_; ++i) {
    IVectorPtr rowIds = IVector::create(pathRowIdsInEachBeam_[i].data(),
                                        pathRowIdsInEachBeam_[i].size(),
                                        false);
    /*
      beams_->scoreGrad[i] has been intialized outside this class, this
      class only keeps a pointer pointing to the original input gradients,
      so here does not need to allocate or initalize the memory.
    */
    tmp->addToRows(*beams_->scoreGrad[i], *rowIds);
  }
}

C
caoying03 已提交
191 192 193 194 195 196
REGISTER_LAYER(cross_entropy_over_beam, CrossEntropyOverBeam);

bool CrossEntropyOverBeam::init(const LayerMap& layerMap,
                                const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);
C
caoying03 已提交
197
  CHECK_EQ(0U, inputLayers_.size() % 3) << "Error input number.";
C
caoying03 已提交
198

C
caoying03 已提交
199 200 201 202
  beamExpanCount_ = inputLayers_.size() / 3;

  candidateScores_.resize(beamExpanCount_);
  candidateScoreGrad_.resize(beamExpanCount_);
C
caoying03 已提交
203

C
caoying03 已提交
204 205 206 207 208
  candidateInBeam_.resize(beamExpanCount_);
  goldSequence_.resize(beamExpanCount_);
  gradToInputs_.resize(beamExpanCount_);

  setNeedSequenceInfo(false);
C
caoying03 已提交
209 210 211
  return true;
}

C
caoying03 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
void CrossEntropyOverBeam::checkInputs() {
  batchSize_ = 0;
  for (size_t i = 0; i < beamExpanCount_; ++i) {
    const Argument& scores = getInput(i * 3);
    const Argument& selCandidates = getInput(i * 3 + 1);
    const Argument& goldSeq = getInput(i * 3 + 2);

    if (i) {
      CHECK(scores.hasSubseq()) << "Beam expansion expect the first one, "
                                   "should be a nested sequence";
      CHECK_EQ(getInputValue(i * 3 + 1)->getWidth(), beamSize_);
      CHECK_EQ(scores.getNumSequences(), batchSize_);
      CHECK_EQ(scores.getNumSubSequences(), selCandidates.getBatchSize());
    } else {
      CHECK(scores.hasSeq()) << "The first beam expansion should be a sequence";
      batchSize_ = scores.getNumSequences();
      beamSize_ = getInputValue(i * 3 + 1)->getWidth();
      CHECK_EQ(batchSize_, selCandidates.getBatchSize());
    }
    CHECK_EQ(1U, scores.value->getWidth());
    CHECK_EQ(batchSize_, goldSeq.getBatchSize());
  }
}

void CrossEntropyOverBeam::copyInputsToCpu() {
  auto copyValue = [](const MatrixPtr& src, MatrixPtr& trg) {
    if (dynamic_cast<GpuMatrix*>(src.get())) {
      Matrix::resizeOrCreate(
          trg, src->getHeight(), src->getWidth(), false, false);
      trg->copyFrom(*src);
    } else {
      trg = std::move(src);
    }
  };

  auto copyIds = [](const IVectorPtr& src, IVectorPtr& trg) {
    if (dynamic_cast<GpuIVector*>(src.get())) {
      IVector::resizeOrCreate(trg, src->getSize(), false);
      trg->copyFrom(*src);
    } else {
      trg = std::move(src);
    }
  };

  beamSplitPos_.clear();
  beamSplitPos_.resize(batchSize_, std::vector<int>(beamExpanCount_, 0));
  for (size_t i = 0; i < beamExpanCount_; ++i) {
    copyValue(getInputValue(i * 3), candidateScores_[i]);
    copyValue(getInputValue(i * 3 + 1), candidateInBeam_[i]);
    copyIds(getInput(i * 3 + 2).ids, goldSequence_[i]);

    if (i) {
      ICpuGpuVectorPtr seqInfo = getInput(i * 3).sequenceStartPositions;
      const int* seqStarts = seqInfo->getMutableData(false);
      ICpuGpuVectorPtr subSeqInfo = getInput(i * 3).subSequenceStartPositions;
      const int* subSeqStarts = subSeqInfo->getMutableData(false);

      size_t seqId = 1;
      for (size_t subSeqId = 0; subSeqId < subSeqInfo->getSize() - 1;
           ++subSeqId) {
        CHECK_LT(seqId, seqInfo->getSize());
        if (subSeqStarts[subSeqId] == seqStarts[seqId]) {
          beamSplitPos_[seqId][i] = beamSplitPos_[seqId - 1][i];
          seqId++;
        }
        beamSplitPos_[seqId - 1][i]++;
      }
    } else {
      for (size_t j = 0; j < batchSize_; ++j) beamSplitPos_[j][i] = j + 1;
    }
  }
}

void CrossEntropyOverBeam::splitBatchBeams() {
  beamCosts_.resize(batchSize_);
  beamPerSeq_.resize(batchSize_, beamExpanCount_);

  for (size_t i = 0; i < beamExpanCount_; ++i) {
    int* seqStarts =
        getInput(i * 3).sequenceStartPositions->getMutableData(false);

    int* subSeqStarts = nullptr;
    int maxLen = 0;
    if (i) {
      subSeqStarts =
          getInput(i * 3).subSequenceStartPositions->getMutableData(false);
      maxLen = getInput(i * 3).subSequenceStartPositions->getSize() - 1;
    } else
      maxLen = getInput(i).sequenceStartPositions->getSize() - 1;

    for (size_t j = 0; j < batchSize_; ++j) {
      beamPerSeq_[j].scores[i] =
          Matrix::create(candidateScores_[i]->getData() + seqStarts[j],
                         seqStarts[j + 1] - seqStarts[j],
                         1,
                         false,
                         false);
      beamPerSeq_[j].scoreGrad[i] =
          Matrix::create(candidateScoreGrad_[i]->getData() + seqStarts[j],
                         seqStarts[j + 1] - seqStarts[j],
                         1,
                         false,
                         false);

      int offset = j ? beamSplitPos_[j - 1][i] : 0;
      int height = beamSplitPos_[j][i] - (j ? beamSplitPos_[j - 1][i] : 0);
      CHECK_GE(maxLen, offset + height);
      beamPerSeq_[j].seqInfo[i] = IVector::create(
          (i ? subSeqStarts : seqStarts) + offset, height + 1, false);
C
caoying03 已提交
321

C
caoying03 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
      beamPerSeq_[j].candidateIds[i] =
          Matrix::create(candidateInBeam_[i]->getData() + offset * beamSize_,
                         height,
                         beamSize_,
                         false,
                         false);
      beamPerSeq_[j].gold[i] = goldSequence_[i]->getData()[j];
    }
  }
}

void CrossEntropyOverBeam::resizeOutput() {
  Matrix::resizeOrCreate(output_.value, batchSize_, 1, false, false);
  output_.value->zero();

  for (size_t i = 0; i < beamExpanCount_; ++i) {
    MatrixPtr inGrad = getInputGrad(i * 3);
    if (dynamic_cast<GpuMatrix*>(inGrad.get())) {
      Matrix::resizeOrCreate(candidateScoreGrad_[i],
                             inGrad->getHeight(),
                             inGrad->getWidth(),
                             false,
                             false);
    } else
      candidateScoreGrad_[i] = std::move(inGrad);
    candidateScoreGrad_[i]->zero();
  }
}

void CrossEntropyOverBeam::copyGradToGpu(size_t copyCount) {
  for (size_t i = 0; i < beamExpanCount_; ++i) {
    if (dynamic_cast<GpuMatrix*>(getInputGrad(i * 3).get()))
      getInputGrad(i * 3)->copyFrom(*candidateScoreGrad_[i]);

    if (i == copyCount - 1) break;
  }
}

void CrossEntropyOverBeam::forward(PassType passType) {
  Layer::forward(passType);

  checkInputs();
  copyInputsToCpu();

  resizeOutput();
  splitBatchBeams();

  MatrixPtr outputValue = getOutputValue();
  for (size_t i = 0; i < batchSize_; ++i) {
    beamCosts_[i].setData(
        std::move(std::make_shared<BeamExpansion>(beamPerSeq_[i])), beamSize_);
    outputValue->getData()[i] = beamCosts_[i].forward();
  }
}

void CrossEntropyOverBeam::backward(const UpdateCallback& callback) {
  for (size_t i = 0; i < batchSize_; ++i) {
    beamCosts_[i].backward();
    copyGradToGpu(beamCosts_[i].getValidExpansionCount());
  }
}
C
caoying03 已提交
383 384

}  // namespace paddle