pybind.cc 39.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

P
peizhilin 已提交
24 25 26 27 28 29 30
#if defined(_WIN32)
#define NOMINMAX
#define GLOG_NO_ABBREVIATED_SEVERITIES  // msvc conflict logging with windows.h
#define GOOGLE_GLOG_DLL_DECL
#include <Windows.h>
#endif

Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
34
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
35 36 37
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
38
#include "paddle/fluid/framework/op_registry.h"
P
peizhilin 已提交
39
#ifndef _WIN32
Y
Yu Yang 已提交
40
#include "paddle/fluid/framework/parallel_executor.h"
P
peizhilin 已提交
41
#endif
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
45
#include "paddle/fluid/framework/version.h"
D
dzhwinter 已提交
46
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/platform/enforce.h"
49
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
50 51 52 53
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
54 55
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
56
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
58

59
#include "paddle/fluid/string/to_string.h"
60

D
Dong Zhihong 已提交
61
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
62
#ifndef _WIN32
Y
Yi Wang 已提交
63
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
64
#endif
Y
Yi Wang 已提交
65 66
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
67 68
#endif

M
minqiyang 已提交
69 70
#include "pybind11/stl.h"

71 72 73 74
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
75 76 77
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

78
namespace paddle {
79
namespace pybind {
80
bool IsCompiledWithCUDA() {
81
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
82 83 84 85 86 87
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
88
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
89
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
90 91 92 93 94 95
  return true;
#else
  return false;
#endif
}

96 97
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
98

99 100 101 102
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

103
  BindException(&m);
Y
Yu Yang 已提交
104

105 106 107
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
108
      .def("_get_dims",
109
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
110
      .def("_set_dims",
Q
qijun 已提交
111
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
112
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
113
           })
Y
yuyang18 已提交
114
      .def("_set_layout",
D
dzhwinter 已提交
115 116 117
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
118
      .def("_alloc_float",
D
dzhwinter 已提交
119
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
120
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
121
           })
Y
yuyang18 已提交
122
      .def("_alloc_float",
Y
Yu Yang 已提交
123
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
124
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
125
           })
Y
yuyang18 已提交
126
      .def("_alloc_int",
Y
Yu Yang 已提交
127
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
128
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
129
           })
Y
yuyang18 已提交
130
      .def("_alloc_int",
D
dzhwinter 已提交
131
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
132
             self.mutable_data<int>(place);
Q
qijun 已提交
133
           })
Y
yuyang18 已提交
134
      .def("_alloc_int",
C
chengduoZH 已提交
135 136 137
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
138
      .def("_alloc_float",
C
chengduoZH 已提交
139 140 141
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
142 143
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
144
      .def("set", PyCPUTensorSetFromArray<double>)
145
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
146
      .def("set", PyCPUTensorSetFromArray<bool>)
147
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
148
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
149
      .def("set", PyCPUTensorSetFromArray<int8_t>)
150
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
151 152
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
153
      .def("set", PyCUDATensorSetFromArray<double>)
154
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
155
      .def("set", PyCUDATensorSetFromArray<bool>)
156
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
157
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
158
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
159 160 161 162 163 164
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
165
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
166
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
167
#endif
168
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
169 170 171 172 173
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
174

X
Xin Pan 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
188
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
189
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
190
     columns, hence [5, 2].
X
Xin Pan 已提交
191 192 193

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
194 195
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
219 220
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
221 222 223 224 225 226 227 228 229 230 231 232 233 234
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
235
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
236 237 238 239 240
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
241
      .def("set_lod",
242
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
243
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
244
             LoD new_lod;
245 246
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
247 248
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
249
             self.set_lod(new_lod);
D
dangqingqing 已提交
250
           })
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
276
      // Set above comments of set_lod.
277 278 279 280 281 282 283 284 285 286 287 288 289
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
290 291
      });

Q
qijun 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
305 306 307 308 309 310 311 312 313
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
314
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
315
      .def("rows", [](SelectedRows &self) {
316 317 318 319 320
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
321
      });
Q
qijun 已提交
322

323
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
324 325 326

All parameter, weight, gradient are variables in Paddle.
)DOC")
327
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
328
      .def("set_int",
329 330
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
331 332 333 334 335 336 337
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
338
      .def("get_tensor",
339 340
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
341 342
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
343 344 345
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
346 347 348 349 350
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
351 352 353
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
354
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
355 356 357 358 359
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
360 361 362

#endif
#ifndef _WIN32
Y
Refine  
Yu Yang 已提交
363 364 365 366 367
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
P
peizhilin 已提交
368 369
           py::return_value_policy::reference)
#endif
Y
Yu Yang 已提交
370
      ;  // NOLINT
371

P
peizhilin 已提交
372
#if !defined(_WIN32)
Y
Refine  
Yu Yang 已提交
373
  py::class_<framework::ReaderHolder>(m, "Reader", "")
374
      .def("reset", &framework::ReaderHolder::ResetAll);
P
peizhilin 已提交
375
#endif
Y
Refine  
Yu Yang 已提交
376

S
sneaxiy 已提交
377 378 379 380
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
381 382
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
383
      .def("push",
S
sneaxiy 已提交
384
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
385
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
386
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
387
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
388
           })
S
sneaxiy 已提交
389 390 391 392
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
393

S
sneaxiy 已提交
394
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
395
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
396
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
397
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
398 399 400 401 402 403
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
404 405
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
406
              return holder->GetQueue();
S
sneaxiy 已提交
407
            },
S
sneaxiy 已提交
408
        py::return_value_policy::copy);
S
sneaxiy 已提交
409

410
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
411
      .def("var",
412
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
413
             return self.Var(name);
Y
Yu Yang 已提交
414
           },
415
           py::return_value_policy::reference)
416
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
417
      .def(py::init<>())
418
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
419
           py::return_value_policy::reference)
Y
Yu Yang 已提交
420
      .def("drop_kids", &Scope::DropKids);
421

Y
Yu Yang 已提交
422 423
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
424 425
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
426 427 428 429 430 431 432 433 434 435
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
436 437
    return ret_values;
  });
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
454
  m.def("prune", [](const ProgramDesc &origin,
455
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
456
    ProgramDesc prog_with_targets(origin);
457
    for (const auto &t : targets) {
458
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
459
    }
460
    proto::ProgramDesc pruned_desc;
461
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
462
    return new ProgramDesc(pruned_desc);
463
  });
464 465 466 467
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
468 469 470
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
471 472
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
473
  // clang-format off
Y
Yu Yang 已提交
474
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
475 476
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
477
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
478 479 480
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
481
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
482
                      -> paddle::platform::DeviceContext* {
483
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
484
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
485
#else
Q
qijun 已提交
486
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
487
#endif
C
chengduoZH 已提交
488 489 490 491 492 493 494 495 496 497 498
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
499
// clang-format on
P
peizhilin 已提交
500
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
501 502
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
503
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
504
      .def(py::init<int>())
D
dzhwinter 已提交
505
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
506

507 508 509
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
510

C
chengduoZH 已提交
511 512 513 514
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
515 516 517 518 519 520 521
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
522
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
523
             self = gpu_place;
C
chengduoZH 已提交
524 525
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
526 527
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
528
      });
Y
Yu Yang 已提交
529

Y
Yu Yang 已提交
530 531 532
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
533
                    proto::OpDesc desc;
Y
Yu Yang 已提交
534 535 536 537 538
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
539
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
540
                  })
541
      .def("run",
542
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
543 544 545
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
546
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
547 548 549 550 551
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
552 553 554 555 556 557 558
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
559 560
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
561
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
562
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
563 564 565 566
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
567

F
fengjiayi 已提交
568
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
569
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
570
      .def("close", &Executor::Close)
S
sneaxiy 已提交
571 572 573 574 575
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
576

D
dzhwinter 已提交
577
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
578
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
579 580
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
581

582
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
583
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
584 585 586 587 588 589
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
590

591
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
592
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
593

X
Xin Pan 已提交
594 595
  m.def("_is_program_version_supported", IsProgramVersionSupported);

596 597 598 599 600
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
601

Y
Yu Yang 已提交
602 603 604 605 606 607 608 609 610
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
611
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
612 613
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
630 631 632
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
633
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
634
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
635
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
636

P
peizhilin 已提交
637
#ifndef _WIN32
D
dangqingqing 已提交
638 639 640
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
641
#endif
P
peizhilin 已提交
642
#endif
Y
Yu Yang 已提交
643

P
peizhilin 已提交
644
#ifndef _WIN32
645 646 647 648
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
649
      .value("kAll", platform::ProfilerState::kAll)
650 651 652 653 654 655 656 657 658 659 660 661 662
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
663
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
664
  m.def("reset_profiler", platform::ResetProfiler);
P
peizhilin 已提交
665
#endif
Y
Yu Yang 已提交
666

667 668
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
669 670 671 672 673
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
674 675 676
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
677

X
fix  
Xin Pan 已提交
678 679
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
680 681 682 683 684 685 686 687 688 689 690 691 692 693
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

P
peizhilin 已提交
694
#ifndef _WIN32
Y
yuyang18 已提交
695
  // -- python binds for parallel executor.
Y
yuyang18 已提交
696
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
697 698 699 700
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
701 702 703 704 705 706 707 708 709 710 711
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
712 713 714

        )DOC");

Y
yuyang18 已提交
715
  exec_strategy.def(py::init())
Y
yuyang18 已提交
716 717 718 719 720
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
721 722 723 724 725 726 727 728 729 730
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
731
      .def_property(
732 733 734 735
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
736 737 738 739
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
740 741 742 743 744
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
745 746 747 748
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
749 750 751 752 753 754 755
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
756 757 758 759 760 761 762 763 764 765 766
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
767 768 769 770 771 772
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
773

Y
yuyang18 已提交
774
  exec_strategy.def_property(
Y
yuyang18 已提交
775 776 777 778 779 780 781
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
782 783
      });

C
chengduo 已提交
784 785 786 787
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
788 789 790 791 792 793 794 795 796 797 798
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
799
)DOC");
Y
yuyang18 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
816
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
817
            self.reduce_ = strategy;
C
chengduo 已提交
818 819 820 821 822 823 824
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
825 826 827 828 829
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
830
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
831
            self.gradient_scale_ = strategy;
C
chengduo 已提交
832 833 834 835 836 837
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
838 839 840 841
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
842
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
843
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
844 845 846 847
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
848 849 850
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
851
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
852
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
853 854
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
855 856 857 858 859 860
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
861
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
862 863 864 865 866 867 868 869 870
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
871
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
872 873 874
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
C
chengduo 已提交
875 876 877 878 879 880
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
881
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
882 883 884 885 886
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
887
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
888
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
889 890 891 892 893
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
894 895 896 897

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
898
                  const std::string &, Scope *, std::vector<Scope *> &,
899 900
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
901 902 903 904
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
905 906 907 908 909
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
910 911 912 913
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
914 915 916 917 918 919
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
920

921
  BindRecordIOWriter(&m);
P
peizhilin 已提交
922
#endif
923
  return m.ptr();
L
Luo Tao 已提交
924
}
925
}  // namespace pybind
926
}  // namespace paddle