data_feed.cc 51.6 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

D
dongdaxiang 已提交
15 16 17 18 19
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

20
#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
21
#ifdef _LINUX
D
dongdaxiang 已提交
22
#include <stdio_ext.h>
H
hutuxian 已提交
23 24 25
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
D
dongdaxiang 已提交
26
#endif
27
#include <utility>
28
#include "gflags/gflags.h"
W
Wang Guibao 已提交
29 30 31
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
32 33
#include "io/fs.h"
#include "io/shell.h"
W
Wang Guibao 已提交
34 35
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
36
#include "paddle/fluid/framework/fleet/box_wrapper.h"
37
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
38
#include "paddle/fluid/platform/timer.h"
W
Wang Guibao 已提交
39 40 41 42

namespace paddle {
namespace framework {

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
void RecordCandidateList::ReSize(size_t length) {
  _mutex.lock();
  _capacity = length;
  CHECK(_capacity > 0);  // NOLINT
  _candidate_list.clear();
  _candidate_list.resize(_capacity);
  _full = false;
  _cur_size = 0;
  _total_size = 0;
  _mutex.unlock();
}

void RecordCandidateList::ReInit() {
  _mutex.lock();
  _full = false;
  _cur_size = 0;
  _total_size = 0;
  _mutex.unlock();
}

void RecordCandidateList::AddAndGet(const Record& record,
                                    RecordCandidate* result) {
  _mutex.lock();
  size_t index = 0;
  ++_total_size;
  auto fleet_ptr = FleetWrapper::GetInstance();
  if (!_full) {
    _candidate_list[_cur_size++] = record;
    _full = (_cur_size == _capacity);
  } else {
    CHECK(_cur_size == _capacity);
    index = fleet_ptr->LocalRandomEngine()() % _total_size;
    if (index < _capacity) {
      _candidate_list[index] = record;
    }
  }
  index = fleet_ptr->LocalRandomEngine()() % _cur_size;
  *result = _candidate_list[index];
  _mutex.unlock();
}

W
Wang Guibao 已提交
84 85 86 87
void DataFeed::AddFeedVar(Variable* var, const std::string& name) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (name == use_slots_[i]) {
88 89 90 91 92
      if (var == nullptr) {
        feed_vec_[i] = nullptr;
      } else {
        feed_vec_[i] = var->GetMutable<LoDTensor>();
      }
W
Wang Guibao 已提交
93 94 95 96 97
    }
  }
}

bool DataFeed::SetFileList(const std::vector<std::string>& files) {
98
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
W
Wang Guibao 已提交
99
  CheckInit();
100 101
  // Do not set finish_set_filelist_ flag,
  // since a user may set file many times after init reader
W
Wang Guibao 已提交
102 103 104 105 106 107 108
  filelist_.assign(files.begin(), files.end());

  finish_set_filelist_ = true;
  return true;
}

void DataFeed::SetBatchSize(int batch_size) {
109 110 111
  PADDLE_ENFORCE_GT(batch_size, 0,
                    platform::errors::InvalidArgument(
                        "Batch size %d is illegal.", batch_size));
W
Wang Guibao 已提交
112 113 114 115
  default_batch_size_ = batch_size;
}

bool DataFeed::PickOneFile(std::string* filename) {
116 117 118 119 120 121 122
  PADDLE_ENFORCE_NOT_NULL(
      mutex_for_pick_file_,
      platform::errors::PreconditionNotMet(
          "You should call SetFileListMutex before PickOneFile"));
  PADDLE_ENFORCE_NOT_NULL(
      file_idx_, platform::errors::PreconditionNotMet(
                     "You should call SetFileListIndex before PickOneFile"));
123 124
  std::unique_lock<std::mutex> lock(*mutex_for_pick_file_);
  if (*file_idx_ == filelist_.size()) {
125
    VLOG(3) << "DataFeed::PickOneFile no more file to pick";
W
Wang Guibao 已提交
126 127
    return false;
  }
128 129
  VLOG(3) << "file_idx_=" << *file_idx_;
  *filename = filelist_[(*file_idx_)++];
W
Wang Guibao 已提交
130 131 132 133 134 135 136 137 138 139 140 141
  return true;
}

void DataFeed::CheckInit() {
  PADDLE_ENFORCE(finish_init_, "Initialization did not succeed.");
}

void DataFeed::CheckSetFileList() {
  PADDLE_ENFORCE(finish_set_filelist_, "Set filelist did not succeed.");
}

void DataFeed::CheckStart() {
142 143 144
  PADDLE_ENFORCE_EQ(finish_start_, true,
                    platform::errors::PreconditionNotMet(
                        "Datafeed has not started running yet."));
W
Wang Guibao 已提交
145 146
}

H
hutuxian 已提交
147 148 149 150 151 152 153
void DataFeed::AssignFeedVar(const Scope& scope) {
  CheckInit();
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    feed_vec_[i] = scope.FindVar(use_slots_[i])->GetMutable<LoDTensor>();
  }
}

154 155 156 157 158 159 160 161 162 163 164 165
void DataFeed::CopyToFeedTensor(void* dst, const void* src, size_t size) {
  if (platform::is_cpu_place(this->place_)) {
    memcpy(dst, src, size);
  } else {
#ifdef PADDLE_WITH_CUDA
    cudaMemcpy(dst, src, size, cudaMemcpyHostToDevice);
#else
    PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option");
#endif
  }
}

W
Wang Guibao 已提交
166 167 168 169
template <typename T>
void PrivateQueueDataFeed<T>::SetQueueSize(int queue_size) {
  PADDLE_ENFORCE(queue_size > 0, "Illegal queue size: %d.", queue_size);
  queue_size_ = queue_size;
170
  queue_ = paddle::framework::MakeChannel<T>();
J
jiaqi 已提交
171
  queue_->SetCapacity(queue_size);
W
Wang Guibao 已提交
172 173 174 175 176
}

template <typename T>
bool PrivateQueueDataFeed<T>::Start() {
  CheckSetFileList();
177 178
  read_thread_ = std::thread(&PrivateQueueDataFeed::ReadThread, this);
  read_thread_.detach();
W
Wang Guibao 已提交
179 180 181 182 183 184 185

  finish_start_ = true;
  return true;
}

template <typename T>
void PrivateQueueDataFeed<T>::ReadThread() {
D
dongdaxiang 已提交
186
#ifdef _LINUX
187 188 189 190 191 192 193
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    T instance;
    while (ParseOneInstanceFromPipe(&instance)) {
194
      queue_->Put(instance);
195
    }
W
Wang Guibao 已提交
196
  }
197
  queue_->Close();
D
dongdaxiang 已提交
198
#endif
W
Wang Guibao 已提交
199 200 201 202
}

template <typename T>
int PrivateQueueDataFeed<T>::Next() {
X
xjqbest 已提交
203
#ifdef _LINUX
W
Wang Guibao 已提交
204 205 206 207
  CheckStart();
  int index = 0;
  T ins_vec;
  while (index < default_batch_size_) {
208 209
    T instance;
    if (!queue_->Get(instance)) {
W
Wang Guibao 已提交
210 211 212 213 214 215 216 217 218
      break;
    }
    AddInstanceToInsVec(&ins_vec, instance, index++);
  }
  batch_size_ = index;
  if (batch_size_ != 0) {
    PutToFeedVec(ins_vec);
  }
  return batch_size_;
X
xjqbest 已提交
219 220 221
#else
  return 0;
#endif
W
Wang Guibao 已提交
222 223
}

224
// explicit instantiation
W
Wang Guibao 已提交
225 226
template class PrivateQueueDataFeed<std::vector<MultiSlotType>>;

227 228
template <typename T>
InMemoryDataFeed<T>::InMemoryDataFeed() {
229 230
  this->file_idx_ = nullptr;
  this->mutex_for_pick_file_ = nullptr;
J
jiaqi 已提交
231 232 233
  this->fp_ = nullptr;
  this->thread_id_ = 0;
  this->thread_num_ = 1;
234
  this->parse_ins_id_ = false;
235
  this->parse_uid_ = false;
236
  this->parse_content_ = false;
237 238 239
  this->parse_logkey_ = false;
  this->enable_pv_merge_ = false;
  this->current_phase_ = 1;  // 1:join ;0:update
J
jiaqi 已提交
240 241 242
  this->input_channel_ = nullptr;
  this->output_channel_ = nullptr;
  this->consume_channel_ = nullptr;
243 244 245 246
}

template <typename T>
bool InMemoryDataFeed<T>::Start() {
X
xjqbest 已提交
247
#ifdef _LINUX
J
jiaqi 已提交
248 249 250 251 252
  this->CheckSetFileList();
  if (output_channel_->Size() == 0 && input_channel_->Size() != 0) {
    std::vector<T> data;
    input_channel_->Read(data);
    output_channel_->Write(std::move(data));
253
  }
X
xjqbest 已提交
254
#endif
J
jiaqi 已提交
255
  this->finish_start_ = true;
256 257 258 259 260
  return true;
}

template <typename T>
int InMemoryDataFeed<T>::Next() {
X
xjqbest 已提交
261
#ifdef _LINUX
J
jiaqi 已提交
262 263 264 265 266
  this->CheckStart();
  CHECK(output_channel_ != nullptr);
  CHECK(consume_channel_ != nullptr);
  VLOG(3) << "output_channel_ size=" << output_channel_->Size()
          << ", consume_channel_ size=" << consume_channel_->Size()
X
xujiaqi01 已提交
267
          << ", thread_id=" << thread_id_;
268
  int index = 0;
D
dongdaxiang 已提交
269
  T instance;
J
jiaqi 已提交
270 271 272 273
  std::vector<T> ins_vec;
  ins_vec.reserve(this->default_batch_size_);
  while (index < this->default_batch_size_) {
    if (output_channel_->Size() == 0) {
D
dongdaxiang 已提交
274
      break;
275
    }
J
jiaqi 已提交
276 277 278 279
    output_channel_->Get(instance);
    ins_vec.push_back(instance);
    ++index;
    consume_channel_->Put(std::move(instance));
D
dongdaxiang 已提交
280
  }
J
jiaqi 已提交
281 282
  this->batch_size_ = index;
  VLOG(3) << "batch_size_=" << this->batch_size_
283
          << ", thread_id=" << thread_id_;
J
jiaqi 已提交
284
  if (this->batch_size_ != 0) {
D
dongdaxiang 已提交
285 286
    PutToFeedVec(ins_vec);
  } else {
J
jiaqi 已提交
287 288 289 290
    VLOG(3) << "finish reading, output_channel_ size="
            << output_channel_->Size()
            << ", consume_channel_ size=" << consume_channel_->Size()
            << ", thread_id=" << thread_id_;
D
dongdaxiang 已提交
291
  }
J
jiaqi 已提交
292
  return this->batch_size_;
X
xjqbest 已提交
293 294 295
#else
  return 0;
#endif
296 297
}

298
template <typename T>
J
jiaqi 已提交
299 300 301 302 303 304 305
void InMemoryDataFeed<T>::SetInputChannel(void* channel) {
  input_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetOutputChannel(void* channel) {
  output_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
306 307 308
}

template <typename T>
J
jiaqi 已提交
309 310
void InMemoryDataFeed<T>::SetConsumeChannel(void* channel) {
  consume_channel_ = static_cast<paddle::framework::ChannelObject<T>*>(channel);
311 312
}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
template <typename T>
void InMemoryDataFeed<T>::SetInputPvChannel(void* channel) {
  input_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetOutputPvChannel(void* channel) {
  output_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

template <typename T>
void InMemoryDataFeed<T>::SetConsumePvChannel(void* channel) {
  consume_pv_channel_ =
      static_cast<paddle::framework::ChannelObject<PvInstance>*>(channel);
}

331 332 333 334 335 336 337 338 339 340
template <typename T>
void InMemoryDataFeed<T>::SetThreadId(int thread_id) {
  thread_id_ = thread_id;
}

template <typename T>
void InMemoryDataFeed<T>::SetThreadNum(int thread_num) {
  thread_num_ = thread_num;
}

341 342 343 344 345
template <typename T>
void InMemoryDataFeed<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
template <typename T>
void InMemoryDataFeed<T>::SetParseLogKey(bool parse_logkey) {
  parse_logkey_ = parse_logkey;
}

template <typename T>
void InMemoryDataFeed<T>::SetEnablePvMerge(bool enable_pv_merge) {
  enable_pv_merge_ = enable_pv_merge;
}

template <typename T>
void InMemoryDataFeed<T>::SetCurrentPhase(int current_phase) {
  current_phase_ = current_phase;
}

361 362 363 364 365
template <typename T>
void InMemoryDataFeed<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

366 367 368 369 370
template <typename T>
void InMemoryDataFeed<T>::SetParseUid(bool parse_uid) {
  parse_uid_ = parse_uid;
}

371 372
template <typename T>
void InMemoryDataFeed<T>::LoadIntoMemory() {
D
dongdaxiang 已提交
373
#ifdef _LINUX
X
xujiaqi01 已提交
374
  VLOG(3) << "LoadIntoMemory() begin, thread_id=" << thread_id_;
375
  std::string filename;
J
jiaqi 已提交
376
  while (this->PickOneFile(&filename)) {
X
xujiaqi01 已提交
377 378
    VLOG(3) << "PickOneFile, filename=" << filename
            << ", thread_id=" << thread_id_;
H
hutuxian 已提交
379 380 381 382 383 384 385 386 387 388 389
#ifdef PADDLE_WITH_BOX_PS
    if (BoxWrapper::GetInstance()->UseAfsApi()) {
      this->fp_ = BoxWrapper::GetInstance()->afs_manager->GetFile(
          filename, this->pipe_command_);
    } else {
#endif
      int err_no = 0;
      this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_);
#ifdef PADDLE_WITH_BOX_PS
    }
#endif
J
jiaqi 已提交
390 391 392
    CHECK(this->fp_ != nullptr);
    __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER);
    paddle::framework::ChannelWriter<T> writer(input_channel_);
393
    T instance;
394 395
    platform::Timer timeline;
    timeline.Start();
D
dongdaxiang 已提交
396
    while (ParseOneInstanceFromPipe(&instance)) {
J
jiaqi 已提交
397 398
      writer << std::move(instance);
      instance = T();
399
    }
J
jiaqi 已提交
400
    writer.Flush();
401
    timeline.Pause();
402 403
    VLOG(3) << "LoadIntoMemory() read all lines, file=" << filename
            << ", cost time=" << timeline.ElapsedSec()
404
            << " seconds, thread_id=" << thread_id_;
405
  }
X
xujiaqi01 已提交
406
  VLOG(3) << "LoadIntoMemory() end, thread_id=" << thread_id_;
D
dongdaxiang 已提交
407
#endif
408 409
}

410
// explicit instantiation
J
jiaqi 已提交
411
template class InMemoryDataFeed<Record>;
412

W
Wang Guibao 已提交
413 414 415 416 417 418 419 420 421 422 423
void MultiSlotDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
J
jiaqi 已提交
424 425
  // temporarily set queue size = batch size * 100
  SetQueueSize(data_feed_desc.batch_size() * 100);
W
Wang Guibao 已提交
426 427 428 429
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
430 431
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
W
Wang Guibao 已提交
432 433 434 435 436 437 438
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
439 440
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
W
Wang Guibao 已提交
441 442 443
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
444 445
      std::vector<int> local_shape;
      if (slot.is_dense()) {
446
        for (int j = 0; j < slot.shape_size(); ++j) {
447 448
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
449
          }
450 451
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
452
          }
453 454
        }
      }
455
      for (int j = 0; j < slot.shape_size(); ++j) {
456
        local_shape.push_back(slot.shape(j));
457 458
      }
      use_slots_shape_.push_back(local_shape);
W
Wang Guibao 已提交
459 460 461
    }
  }
  feed_vec_.resize(use_slots_.size());
462
  pipe_command_ = data_feed_desc.pipe_command();
W
Wang Guibao 已提交
463 464 465
  finish_init_ = true;
}

D
dongdaxiang 已提交
466
void MultiSlotDataFeed::ReadThread() {
467
#ifdef _LINUX
468 469 470 471
  std::string filename;
  while (PickOneFile(&filename)) {
    int err_no = 0;
    fp_ = fs_open_read(filename, &err_no, pipe_command_);
D
dongdaxiang 已提交
472
    CHECK(fp_ != nullptr);
473 474 475 476 477
    __fsetlocking(&*fp_, FSETLOCKING_BYCALLER);
    std::vector<MultiSlotType> instance;
    int ins_num = 0;
    while (ParseOneInstanceFromPipe(&instance)) {
      ins_num++;
478
      queue_->Put(instance);
479
    }
D
dongdaxiang 已提交
480
    VLOG(3) << "filename: " << filename << " inst num: " << ins_num;
D
dongdaxiang 已提交
481
  }
482
  queue_->Close();
483
#endif
D
dongdaxiang 已提交
484 485
}

W
Wang Guibao 已提交
486
bool MultiSlotDataFeed::CheckFile(const char* filename) {
487
#ifdef _LINUX
W
Wang Guibao 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
  CheckInit();  // get info of slots
  std::ifstream fin(filename);
  if (!fin.good()) {
    VLOG(1) << "error: open file<" << filename << "> fail";
    return false;
  }
  std::string line;
  int instance_cout = 0;
  std::string all_slots_alias = "";
  for (const auto& alias : all_slots_) {
    all_slots_alias += alias + " ";
  }
  std::string use_slots_alias = "";
  for (const auto& alias : use_slots_) {
    use_slots_alias += alias + " ";
  }
  VLOG(3) << "total slots num: " << all_slots_.size();
  VLOG(3) << "total slots alias: " << all_slots_alias;
  VLOG(3) << "used slots num: " << use_slots_.size();
  VLOG(3) << "used slots alias: " << use_slots_alias;
  while (getline(fin, line)) {
    ++instance_cout;
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int len = line.length();
    for (size_t i = 0; i < all_slots_.size(); ++i) {
X
xjqbest 已提交
514
      auto num = strtol(endptr, &endptr, 10);
W
Wang Guibao 已提交
515
      if (num < 0) {
516 517
        VLOG(0) << "error: the number of ids is a negative number: " << num;
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
518
                << filename << ">";
519 520
        VLOG(0) << "Error occured when parsing " << i
                << " th slot with total slots number: " << all_slots_.size();
W
Wang Guibao 已提交
521 522
        return false;
      } else if (num == 0) {
523
        VLOG(0)
W
Wang Guibao 已提交
524 525 526 527
            << "error: the number of ids can not be zero, you need "
               "padding it in data generator; or if there is something wrong"
               " with the data, please check if the data contains unresolvable "
               "characters.";
528
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
529
                << filename << ">";
530 531
        VLOG(0) << "Error occured when parsing " << i
                << " th slot with total slots number: " << all_slots_.size();
W
Wang Guibao 已提交
532
        return false;
X
xjqbest 已提交
533
      } else if (errno == ERANGE || num > INT_MAX) {
534 535
        VLOG(0) << "error: the number of ids greater than INT_MAX";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
536
                << filename << ">";
537 538
        VLOG(0) << "Error occured when parsing " << i
                << " th slot with total slots number: " << all_slots_.size();
W
Wang Guibao 已提交
539 540 541
        return false;
      }
      if (all_slots_type_[i] == "float") {
542
        for (int j = 0; j < num; ++j) {
W
Wang Guibao 已提交
543 544
          strtof(endptr, &endptr);
          if (errno == ERANGE) {
545
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
546
                       "representable values for float";
547
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
548
                    << filename << ">";
549 550 551 552 553
            VLOG(0) << "Error occured when parsing " << i
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
W
Wang Guibao 已提交
554 555
            return false;
          }
556
          if (j + 1 != num && endptr - str == len) {
557
            VLOG(0) << "error: there is a wrong with the number of ids.";
558 559 560 561 562
            VLOG(0) << "Error occured when parsing " << i
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
563
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
564 565 566 567 568
                    << filename << ">";
            return false;
          }
        }
      } else if (all_slots_type_[i] == "uint64") {
569
        for (int j = 0; j < num; ++j) {
W
Wang Guibao 已提交
570 571
          strtoull(endptr, &endptr, 10);
          if (errno == ERANGE) {
572
            VLOG(0) << "error: the value is out of the range of "
W
Wang Guibao 已提交
573
                       "representable values for uint64_t";
574 575 576 577 578
            VLOG(0) << "Error occured when parsing " << i
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
579
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
580 581 582
                    << filename << ">";
            return false;
          }
583
          if (j + 1 != num && endptr - str == len) {
584
            VLOG(0) << "error: there is a wrong with the number of ids.";
585 586 587 588 589
            VLOG(0) << "Error occured when parsing " << i
                    << " th slot with total slots number: "
                    << all_slots_.size();
            VLOG(0) << "and in this slot: " << j
                    << " th id with total id number: " << num;
590
            VLOG(0) << "please check line<" << instance_cout << "> in file<"
W
Wang Guibao 已提交
591 592 593 594 595
                    << filename << ">";
            return false;
          }
        }
      } else {
596
        VLOG(0) << "error: this type<" << all_slots_type_[i]
W
Wang Guibao 已提交
597 598 599 600
                << "> is not supported";
        return false;
      }
    }
601 602 603
    // It may be added '\t' character to the end of the output of reduce
    // task when processes data by Hadoop(when the output of the reduce
    // task of Hadoop has only one field, it will add a '\t' at the end
604 605 606 607 608
    // of the line by default, and you can use this option to avoid it:
    // `-D mapred.textoutputformat.ignoreseparator=true`), which does
    // not affect the correctness of the data. Therefore, it should be
    // judged that the data is not normal when the end of each line of
    // data contains characters which are not spaces.
609 610 611 612 613 614 615 616
    while (endptr - str != len) {
      if (!isspace(*(endptr++))) {
        VLOG(0)
            << "error: there is some extra characters at the end of the line.";
        VLOG(0) << "please check line<" << instance_cout << "> in file<"
                << filename << ">";
        return false;
      }
W
Wang Guibao 已提交
617 618 619 620
    }
  }
  VLOG(3) << "instances cout: " << instance_cout;
  VLOG(3) << "The file format is correct";
621
#endif
W
Wang Guibao 已提交
622 623 624
  return true;
}

D
dongdaxiang 已提交
625 626
bool MultiSlotDataFeed::ParseOneInstanceFromPipe(
    std::vector<MultiSlotType>* instance) {
627
#ifdef _LINUX
628 629 630
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
D
dongdaxiang 已提交
631 632
    return false;
  } else {
633 634 635
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);

D
dongdaxiang 已提交
636 637
    const char* str = reader.get();
    std::string line = std::string(str);
638
    // VLOG(3) << line;
D
dongdaxiang 已提交
639 640 641 642 643
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
644 645 646 647 648 649
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
650 651 652
              "characters.\nplease check this error line: %s, \n Specifically, "
              "something wrong happened(the length of this slot's feasign is 0)"
              "when we parse the %d th slots."
653
              "Maybe something wrong around this slot"
654 655 656
              "\nWe detect the feasign number of this slot is %d, "
              "which is illegal.",
              str, i, num));
D
dongdaxiang 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
D
dongdaxiang 已提交
673 674 675 676
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
D
dongdaxiang 已提交
677 678 679 680 681
        }
      }
    }
    return true;
  }
682 683 684
#else
  return true;
#endif
D
dongdaxiang 已提交
685 686
}

W
Wang Guibao 已提交
687
bool MultiSlotDataFeed::ParseOneInstance(std::vector<MultiSlotType>* instance) {
X
xjqbest 已提交
688
#ifdef _LINUX
W
Wang Guibao 已提交
689 690 691 692 693 694 695 696 697 698 699
  std::string line;
  if (getline(file_, line)) {
    int use_slots_num = use_slots_.size();
    instance->resize(use_slots_num);
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
700 701 702 703 704 705 706 707 708
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
              "characters.\nplease check this error line: %s, \n Specifically, "
              "something wrong happened(the length of this slot's feasign is 0)"
              "when we parse the %d th slots."
709
              "Maybe something wrong around this slot"
710 711 712
              "\nWe detect the feasign number of this slot is %d, "
              "which is illegal.",
              str, i, num));
713

W
Wang Guibao 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
      if (idx != -1) {
        (*instance)[idx].Init(all_slots_type_[i]);
        if ((*instance)[idx].GetType()[0] == 'f') {  // float
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
            (*instance)[idx].AddValue(feasign);
          }
        } else if ((*instance)[idx].GetType()[0] == 'u') {  // uint64
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
            (*instance)[idx].AddValue(feasign);
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
  } else {
    return false;
  }
X
xjqbest 已提交
737 738
#endif
  return false;
W
Wang Guibao 已提交
739 740 741 742 743
}

void MultiSlotDataFeed::AddInstanceToInsVec(
    std::vector<MultiSlotType>* ins_vec,
    const std::vector<MultiSlotType>& instance, int index) {
X
xjqbest 已提交
744
#ifdef _LINUX
W
Wang Guibao 已提交
745 746 747 748 749 750 751
  if (index == 0) {
    ins_vec->resize(instance.size());
    for (size_t i = 0; i < instance.size(); ++i) {
      (*ins_vec)[i].Init(instance[i].GetType());
      (*ins_vec)[i].InitOffset();
    }
  }
752

W
Wang Guibao 已提交
753 754 755
  for (size_t i = 0; i < instance.size(); ++i) {
    (*ins_vec)[i].AddIns(instance[i]);
  }
X
xjqbest 已提交
756
#endif
W
Wang Guibao 已提交
757 758 759 760
}

void MultiSlotDataFeed::PutToFeedVec(
    const std::vector<MultiSlotType>& ins_vec) {
X
xjqbest 已提交
761
#ifdef _LINUX
W
Wang Guibao 已提交
762
  for (size_t i = 0; i < use_slots_.size(); ++i) {
763 764 765
    if (feed_vec_[i] == nullptr) {
      continue;
    }
W
Wang Guibao 已提交
766 767 768
    const auto& type = ins_vec[i].GetType();
    const auto& offset = ins_vec[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());
769

W
Wang Guibao 已提交
770 771
    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec[i].GetFloatData();
772 773 774
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float));
W
Wang Guibao 已提交
775 776 777
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec[i].GetUint64Data();
778
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
779 780 781
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0],
                       total_instance * sizeof(int64_t));
782
    }
783

784 785 786 787 788 789
    // LoD data_lod{offset};
    // feed_vec_[i]->set_lod(data_lod);
    if (!use_slots_is_dense_[i]) {
      LoD data_lod{offset};
      feed_vec_[i]->set_lod(data_lod);
    }
790
    if (use_slots_is_dense_[i]) {
791 792 793 794
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
795
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
W
Wang Guibao 已提交
796 797
    }
  }
X
xjqbest 已提交
798
#endif
W
Wang Guibao 已提交
799 800
}

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
void MultiSlotInMemoryDataFeed::Init(
    const paddle::framework::DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
816 817
  total_dims_without_inductive_.resize(all_slot_num);
  inductive_shape_index_.resize(all_slot_num);
818 819 820 821 822 823 824
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
825 826
    total_dims_without_inductive_[i] = 1;
    inductive_shape_index_[i] = -1;
827 828 829
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
830 831
      std::vector<int> local_shape;
      if (slot.is_dense()) {
832
        for (int j = 0; j < slot.shape_size(); ++j) {
833 834
          if (slot.shape(j) > 0) {
            total_dims_without_inductive_[i] *= slot.shape(j);
835
          }
836 837
          if (slot.shape(j) == -1) {
            inductive_shape_index_[i] = j;
838
          }
839 840
        }
      }
841
      for (int j = 0; j < slot.shape_size(); ++j) {
842
        local_shape.push_back(slot.shape(j));
843 844
      }
      use_slots_shape_.push_back(local_shape);
845 846
    }
  }
847
  uid_slot_ = multi_slot_desc.uid_slot();
848 849 850 851 852
  feed_vec_.resize(use_slots_.size());
  pipe_command_ = data_feed_desc.pipe_command();
  finish_init_ = true;
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866
void MultiSlotInMemoryDataFeed::GetMsgFromLogKey(const std::string& log_key,
                                                 uint64_t* search_id,
                                                 uint32_t* cmatch,
                                                 uint32_t* rank) {
  std::string searchid_str = log_key.substr(16, 16);
  *search_id = (uint64_t)strtoull(searchid_str.c_str(), NULL, 16);

  std::string cmatch_str = log_key.substr(11, 3);
  *cmatch = (uint32_t)strtoul(cmatch_str.c_str(), NULL, 16);

  std::string rank_str = log_key.substr(14, 2);
  *rank = (uint32_t)strtoul(rank_str.c_str(), NULL, 16);
}

J
jiaqi 已提交
867
bool MultiSlotInMemoryDataFeed::ParseOneInstanceFromPipe(Record* instance) {
X
xjqbest 已提交
868
#ifdef _LINUX
869 870 871 872 873 874 875
  thread_local string::LineFileReader reader;

  if (!reader.getline(&*(fp_.get()))) {
    return false;
  } else {
    const char* str = reader.get();
    std::string line = std::string(str);
876
    // VLOG(3) << line;
877 878
    char* endptr = const_cast<char*>(str);
    int pos = 0;
879 880 881 882 883 884 885 886 887 888 889 890
    if (parse_ins_id_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      instance->ins_id_ = std::string(str + pos, len);
      pos += len + 1;
      VLOG(3) << "ins_id " << instance->ins_id_;
    }
891 892 893 894 895 896 897 898 899 900 901 902
    if (parse_content_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      instance->content_ = std::string(str + pos, len);
      pos += len + 1;
      VLOG(3) << "content " << instance->content_;
    }
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
    if (parse_logkey_) {
      int num = strtol(&str[pos], &endptr, 10);
      CHECK(num == 1);  // NOLINT
      pos = endptr - str + 1;
      size_t len = 0;
      while (str[pos + len] != ' ') {
        ++len;
      }
      // parse_logkey
      std::string log_key = std::string(str + pos, len);
      uint64_t search_id;
      uint32_t cmatch;
      uint32_t rank;
      GetMsgFromLogKey(log_key, &search_id, &cmatch, &rank);

      instance->search_id = search_id;
      instance->cmatch = cmatch;
      instance->rank = rank;
      pos += len + 1;
    }
923 924 925
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
926 927 928 929 930 931 932 933 934
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
              "characters.\nplease check this error line: %s, \n Specifically, "
              "something wrong happened(the length of this slot's feasign is 0)"
              "when we parse the %d th slots."
935
              "Maybe something wrong around this slot"
936 937 938
              "\nWe detect the feasign number of this slot is %d, "
              "which is illegal.",
              str, i, num));
939 940 941 942 943 944 945 946 947 948 949

      if (parse_uid_ && all_slots_[i] == uid_slot_) {
        PADDLE_ENFORCE(num == 1 && all_slots_type_[i][0] == 'u',
                       "The uid has to be uint64 and single.\n"
                       "please check this error line: %s",
                       str);

        char* uidptr = endptr;
        uint64_t feasign = (uint64_t)strtoull(uidptr, &uidptr, 10);
        instance->uid_ = feasign;
      }
950
      if (idx != -1) {
J
jiaqi 已提交
951
        if (all_slots_type_[i][0] == 'f') {  // float
952 953
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
J
jiaqi 已提交
954
            // if float feasign is equal to zero, ignore it
955 956
            // except when slot is dense
            if (fabs(feasign) < 1e-6 && !use_slots_is_dense_[i]) {
J
jiaqi 已提交
957 958 959 960 961
              continue;
            }
            FeatureKey f;
            f.float_feasign_ = feasign;
            instance->float_feasigns_.push_back(FeatureItem(f, idx));
962
          }
J
jiaqi 已提交
963
        } else if (all_slots_type_[i][0] == 'u') {  // uint64
964 965
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
J
jiaqi 已提交
966
            // if uint64 feasign is equal to zero, ignore it
967 968
            // except when slot is dense
            if (feasign == 0 && !use_slots_is_dense_[i]) {
J
jiaqi 已提交
969 970 971 972 973
              continue;
            }
            FeatureKey f;
            f.uint64_feasign_ = feasign;
            instance->uint64_feasigns_.push_back(FeatureItem(f, idx));
974 975 976 977 978 979 980 981 982 983 984 985
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          // pos = line.find_first_of(' ', pos + 1);
          while (line[pos + 1] != ' ') {
            pos++;
          }
        }
      }
    }
J
jiaqi 已提交
986 987
    instance->float_feasigns_.shrink_to_fit();
    instance->uint64_feasigns_.shrink_to_fit();
988 989
    return true;
  }
X
xjqbest 已提交
990 991 992
#else
  return false;
#endif
993 994
}

J
jiaqi 已提交
995
bool MultiSlotInMemoryDataFeed::ParseOneInstance(Record* instance) {
X
xjqbest 已提交
996
#ifdef _LINUX
997 998
  std::string line;
  if (getline(file_, line)) {
999
    VLOG(3) << line;
1000 1001 1002 1003 1004 1005 1006
    // parse line
    const char* str = line.c_str();
    char* endptr = const_cast<char*>(str);
    int pos = 0;
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      int num = strtol(&str[pos], &endptr, 10);
1007 1008 1009 1010 1011 1012 1013 1014 1015
      PADDLE_ENFORCE_NE(
          num, 0,
          platform::errors::InvalidArgument(
              "The number of ids can not be zero, you need padding "
              "it in data generator; or if there is something wrong with "
              "the data, please check if the data contains unresolvable "
              "characters.\nplease check this error line: %s, \n Specifically, "
              "something wrong happened(the length of this slot's feasign is 0)"
              "when we parse the %d th slots."
1016
              "Maybe something wrong around this slot"
1017 1018 1019
              "\nWe detect the feasign number of this slot is %d, "
              "which is illegal.",
              str, i, num));
1020 1021

      if (idx != -1) {
J
jiaqi 已提交
1022
        if (all_slots_type_[i][0] == 'f') {  // float
1023 1024
          for (int j = 0; j < num; ++j) {
            float feasign = strtof(endptr, &endptr);
J
jiaqi 已提交
1025 1026 1027 1028 1029 1030
            if (fabs(feasign) < 1e-6) {
              continue;
            }
            FeatureKey f;
            f.float_feasign_ = feasign;
            instance->float_feasigns_.push_back(FeatureItem(f, idx));
1031
          }
J
jiaqi 已提交
1032
        } else if (all_slots_type_[i][0] == 'u') {  // uint64
1033 1034
          for (int j = 0; j < num; ++j) {
            uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
J
jiaqi 已提交
1035 1036 1037 1038 1039 1040
            if (feasign == 0) {
              continue;
            }
            FeatureKey f;
            f.uint64_feasign_ = feasign;
            instance->uint64_feasigns_.push_back(FeatureItem(f, idx));
1041 1042 1043 1044 1045 1046 1047 1048 1049
          }
        }
        pos = endptr - str;
      } else {
        for (int j = 0; j <= num; ++j) {
          pos = line.find_first_of(' ', pos + 1);
        }
      }
    }
J
jiaqi 已提交
1050 1051 1052
    instance->float_feasigns_.shrink_to_fit();
    instance->uint64_feasigns_.shrink_to_fit();
    return true;
1053 1054 1055
  } else {
    return false;
  }
X
xjqbest 已提交
1056 1057
#endif
  return false;
1058 1059
}

J
jiaqi 已提交
1060 1061
void MultiSlotInMemoryDataFeed::PutToFeedVec(
    const std::vector<Record>& ins_vec) {
X
xjqbest 已提交
1062
#ifdef _LINUX
J
jiaqi 已提交
1063 1064 1065 1066 1067 1068 1069
  std::vector<std::vector<float>> batch_float_feasigns(use_slots_.size(),
                                                       std::vector<float>());
  std::vector<std::vector<uint64_t>> batch_uint64_feasigns(
      use_slots_.size(), std::vector<uint64_t>());
  std::vector<std::vector<size_t>> offset(use_slots_.size(),
                                          std::vector<size_t>{0});
  std::vector<bool> visit(use_slots_.size(), false);
1070 1071 1072 1073
  ins_content_vec_.clear();
  ins_content_vec_.reserve(ins_vec.size());
  ins_id_vec_.clear();
  ins_id_vec_.reserve(ins_vec.size());
J
jiaqi 已提交
1074 1075
  for (size_t i = 0; i < ins_vec.size(); ++i) {
    auto& r = ins_vec[i];
1076 1077
    ins_id_vec_.push_back(r.ins_id_);
    ins_content_vec_.push_back(r.content_);
J
jiaqi 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    for (auto& item : r.float_feasigns_) {
      batch_float_feasigns[item.slot()].push_back(item.sign().float_feasign_);
      visit[item.slot()] = true;
    }
    for (auto& item : r.uint64_feasigns_) {
      batch_uint64_feasigns[item.slot()].push_back(item.sign().uint64_feasign_);
      visit[item.slot()] = true;
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
      if (visit[j]) {
        visit[j] = false;
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
          batch_float_feasigns[j].push_back(0.0);
        } else if (type[0] == 'u') {  // uint64
          batch_uint64_feasigns[j].push_back(0);
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
        offset[j].push_back(batch_float_feasigns[j].size());
      } else if (type[0] == 'u') {  // uint64
        offset[j].push_back(batch_uint64_feasigns[j].size());
      }
1104 1105 1106 1107
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
1108 1109 1110
    if (feed_vec_[i] == nullptr) {
      continue;
    }
J
jiaqi 已提交
1111 1112
    int total_instance = offset[i].back();
    const auto& type = all_slots_type_[i];
1113
    if (type[0] == 'f') {  // float
J
jiaqi 已提交
1114
      float* feasign = batch_float_feasigns[i].data();
1115 1116 1117
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
1118 1119
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
J
jiaqi 已提交
1120
      uint64_t* feasign = batch_uint64_feasigns[i].data();
1121
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
1122 1123
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
1124
    }
J
jiaqi 已提交
1125
    auto& slot_offset = offset[i];
1126 1127 1128 1129 1130 1131
    // LoD data_lod{slot_offset};
    // feed_vec_[i]->set_lod(data_lod);
    if (!use_slots_is_dense_[i]) {
      LoD data_lod{slot_offset};
      feed_vec_[i]->set_lod(data_lod);
    }
1132
    if (use_slots_is_dense_[i]) {
1133 1134 1135 1136
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
1137
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
1138 1139
    }
  }
X
xjqbest 已提交
1140
#endif
1141 1142
}

H
hutuxian 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
template <typename T>
void PrivateInstantDataFeed<T>::PutToFeedVec() {
  for (size_t i = 0; i < use_slots_.size(); ++i) {
    const auto& type = ins_vec_[i].GetType();
    const auto& offset = ins_vec_[i].GetOffset();
    int total_instance = static_cast<int>(offset.back());

    if (type[0] == 'f') {  // float
      const auto& feasign = ins_vec_[i].GetFloatData();
1153 1154 1155
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float));
H
hutuxian 已提交
1156 1157 1158 1159
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      const auto& feasign = ins_vec_[i].GetUint64Data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
1160 1161 1162
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, &feasign[0],
                       total_instance * sizeof(int64_t));
H
hutuxian 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    }

    LoD data_lod{offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      int64_t total_dims = 1;
      for (const auto e : use_slots_shape_[i]) {
        total_dims *= e;
      }
      PADDLE_ENFORCE(
          total_dims == total_instance,
          "The actual data size of slot[%s] doesn't match its declaration",
          use_slots_[i].c_str());
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
    }
  }
}

template <typename T>
int PrivateInstantDataFeed<T>::Next() {
  if (ParseOneMiniBatch()) {
    PutToFeedVec();
    return ins_vec_[0].GetBatchSize();
  }
  Postprocess();

  std::string filename;
  if (!PickOneFile(&filename)) {
    return -1;
  }
  if (!Preprocess(filename)) {
    return -1;
  }

  PADDLE_ENFORCE(true == ParseOneMiniBatch(), "Fail to parse mini-batch data");
  PutToFeedVec();
  return ins_vec_[0].GetBatchSize();
}

template <typename T>
void PrivateInstantDataFeed<T>::Init(const DataFeedDesc& data_feed_desc) {
  finish_init_ = false;
  finish_set_filelist_ = false;
  finish_start_ = false;

  PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(),
                 "Multi_slot_desc has not been set.");
  paddle::framework::MultiSlotDesc multi_slot_desc =
      data_feed_desc.multi_slot_desc();
  SetBatchSize(data_feed_desc.batch_size());
  size_t all_slot_num = multi_slot_desc.slots_size();
  all_slots_.resize(all_slot_num);
  all_slots_type_.resize(all_slot_num);
  use_slots_index_.resize(all_slot_num);
  multi_inductive_shape_index_.resize(all_slot_num);
  use_slots_.clear();
  use_slots_is_dense_.clear();
  for (size_t i = 0; i < all_slot_num; ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    all_slots_[i] = slot.name();
    all_slots_type_[i] = slot.type();
    use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1;
    if (slot.is_used()) {
      use_slots_.push_back(all_slots_[i]);
      use_slots_is_dense_.push_back(slot.is_dense());
      std::vector<int> local_shape;
      if (slot.is_dense()) {
1230
        for (int j = 0; j < slot.shape_size(); ++j) {
H
hutuxian 已提交
1231 1232 1233 1234 1235
          if (slot.shape(j) == -1) {
            multi_inductive_shape_index_[i].push_back(j);
          }
        }
      }
1236
      for (int j = 0; j < slot.shape_size(); ++j) {
H
hutuxian 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
        local_shape.push_back(slot.shape(j));
      }
      use_slots_shape_.push_back(local_shape);
    }
  }
  feed_vec_.resize(use_slots_.size());
  ins_vec_.resize(use_slots_.size());

  finish_init_ = true;
}

template class PrivateInstantDataFeed<std::vector<MultiSlotType>>;

bool MultiSlotFileInstantDataFeed::Preprocess(const std::string& filename) {
  fd_ = open(filename.c_str(), O_RDONLY);
  PADDLE_ENFORCE(fd_ != -1, "Fail to open file: %s", filename.c_str());

  struct stat sb;
  fstat(fd_, &sb);
  end_ = static_cast<size_t>(sb.st_size);

  buffer_ =
      reinterpret_cast<char*>(mmap(NULL, end_, PROT_READ, MAP_PRIVATE, fd_, 0));
  PADDLE_ENFORCE(buffer_ != MAP_FAILED, strerror(errno));

  offset_ = 0;
  return true;
}

bool MultiSlotFileInstantDataFeed::Postprocess() {
  if (buffer_ != nullptr) {
    munmap(buffer_, end_);
    buffer_ = nullptr;
  }
  if (fd_ != -1) {
    close(fd_);
    fd_ = -1;
    end_ = 0;
    offset_ = 0;
  }
  return true;
}

bool MultiSlotFileInstantDataFeed::ParseOneMiniBatch() {
  if (offset_ == end_) {
    return false;
  }

  batch_size_ = 0;
  while (batch_size_ < default_batch_size_ && offset_ < end_) {
    for (size_t i = 0; i < use_slots_index_.size(); ++i) {
      int idx = use_slots_index_[i];
      char type = all_slots_type_[i][0];

      uint16_t num = *reinterpret_cast<uint16_t*>(buffer_ + offset_);
      PADDLE_ENFORCE(
          num,
          "The number of ids can not be zero, you need padding "
          "it in data generator; or if there is something wrong with "
          "the data, please check if the data contains unresolvable "
          "characters.");
      offset_ += sizeof(uint16_t);

      if (idx != -1) {
        int inductive_size = multi_inductive_shape_index_[i].size();
        if (UNLIKELY(batch_size_ == 0)) {
          ins_vec_[idx].Init(all_slots_type_[i], default_batch_size_ * num);
          ins_vec_[idx].InitOffset(default_batch_size_);
          uint64_t* inductive_shape =
              reinterpret_cast<uint64_t*>(buffer_ + offset_);
          for (int inductive_id = 0; inductive_id < inductive_size;
               ++inductive_id) {
            use_slots_shape_[i][multi_inductive_shape_index_[i][inductive_id]] =
                static_cast<int>(*(inductive_shape + inductive_id));
          }
        }
        num -= inductive_size;
        offset_ += sizeof(uint64_t) * inductive_size;

        if (type == 'f') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<float*>(buffer_ + offset_), num);
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          ins_vec_[idx].AppendValues(
              reinterpret_cast<uint64_t*>(buffer_ + offset_), num);
          offset_ += num * sizeof(uint64_t);
        }
      } else {
        if (type == 'f') {
          offset_ += num * sizeof(float);
        } else if (type == 'u') {
          offset_ += num * sizeof(uint64_t);
        }
      }
    }
    ++batch_size_;
    // OPTIMIZE: It is better to insert check codes between instances for format
    // checking
  }

  PADDLE_ENFORCE(batch_size_ == default_batch_size_ || offset_ == end_,
                 "offset_ != end_");
  return true;
}
#endif

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
bool PaddleBoxDataFeed::Start() {
#ifdef _LINUX
  int phase = GetCurrentPhase();  // join: 1, update: 0
  this->CheckSetFileList();
  if (enable_pv_merge_ && phase == 1) {
    // join phase : input_pv_channel to output_pv_channel
    if (output_pv_channel_->Size() == 0 && input_pv_channel_->Size() != 0) {
      std::vector<PvInstance> data;
      input_pv_channel_->Read(data);
      output_pv_channel_->Write(std::move(data));
    }
  } else {
    // input_channel to output
    if (output_channel_->Size() == 0 && input_channel_->Size() != 0) {
      std::vector<Record> data;
      input_channel_->Read(data);
      output_channel_->Write(std::move(data));
    }
  }
#endif
  this->finish_start_ = true;
  return true;
}

int PaddleBoxDataFeed::Next() {
#ifdef _LINUX
  int phase = GetCurrentPhase();  // join: 1, update: 0
  this->CheckStart();
  if (enable_pv_merge_ && phase == 1) {
    // join phase : output_pv_channel to consume_pv_channel
    CHECK(output_pv_channel_ != nullptr);
    CHECK(consume_pv_channel_ != nullptr);
    VLOG(3) << "output_pv_channel_ size=" << output_pv_channel_->Size()
            << ", consume_pv_channel_ size=" << consume_pv_channel_->Size()
            << ", thread_id=" << thread_id_;
    int index = 0;
    PvInstance pv_instance;
    std::vector<PvInstance> pv_vec;
    pv_vec.reserve(this->pv_batch_size_);
    while (index < this->pv_batch_size_) {
      if (output_pv_channel_->Size() == 0) {
        break;
      }
      output_pv_channel_->Get(pv_instance);
      pv_vec.push_back(pv_instance);
      ++index;
      consume_pv_channel_->Put(std::move(pv_instance));
    }
    this->batch_size_ = index;
    VLOG(3) << "pv_batch_size_=" << this->batch_size_
            << ", thread_id=" << thread_id_;
    if (this->batch_size_ != 0) {
      PutToFeedVec(pv_vec);
    } else {
      VLOG(3) << "finish reading, output_pv_channel_ size="
              << output_pv_channel_->Size()
              << ", consume_pv_channel_ size=" << consume_pv_channel_->Size()
              << ", thread_id=" << thread_id_;
    }
    return this->batch_size_;
  } else {
    this->batch_size_ = MultiSlotInMemoryDataFeed::Next();
    return this->batch_size_;
  }
#else
  return 0;
#endif
}

void PaddleBoxDataFeed::Init(const DataFeedDesc& data_feed_desc) {
  MultiSlotInMemoryDataFeed::Init(data_feed_desc);
  rank_offset_name_ = data_feed_desc.rank_offset();
  pv_batch_size_ = data_feed_desc.pv_batch_size();
}

void PaddleBoxDataFeed::GetRankOffset(const std::vector<PvInstance>& pv_vec,
                                      int ins_number) {
  int index = 0;
  int max_rank = 3;  // the value is setting
  int row = ins_number;
  int col = max_rank * 2 + 1;
  int pv_num = pv_vec.size();

  std::vector<int> rank_offset_mat(row * col, -1);
  rank_offset_mat.shrink_to_fit();

  for (int i = 0; i < pv_num; i++) {
    auto pv_ins = pv_vec[i];
    int ad_num = pv_ins->ads.size();
    int index_start = index;
    for (int j = 0; j < ad_num; ++j) {
      auto ins = pv_ins->ads[j];
      int rank = -1;
      if ((ins->cmatch == 222 || ins->cmatch == 223) &&
          ins->rank <= static_cast<uint32_t>(max_rank) && ins->rank != 0) {
        rank = ins->rank;
      }

      rank_offset_mat[index * col] = rank;
      if (rank > 0) {
        for (int k = 0; k < ad_num; ++k) {
          auto cur_ins = pv_ins->ads[k];
          int fast_rank = -1;
          if ((cur_ins->cmatch == 222 || cur_ins->cmatch == 223) &&
              cur_ins->rank <= static_cast<uint32_t>(max_rank) &&
              cur_ins->rank != 0) {
            fast_rank = cur_ins->rank;
          }

          if (fast_rank > 0) {
            int m = fast_rank - 1;
            rank_offset_mat[index * col + 2 * m + 1] = cur_ins->rank;
            rank_offset_mat[index * col + 2 * m + 2] = index_start + k;
          }
        }
      }
      index += 1;
    }
  }

  int* rank_offset = rank_offset_mat.data();
  int* tensor_ptr = rank_offset_->mutable_data<int>({row, col}, this->place_);
  CopyToFeedTensor(tensor_ptr, rank_offset, row * col * sizeof(int));
}

void PaddleBoxDataFeed::AssignFeedVar(const Scope& scope) {
  MultiSlotInMemoryDataFeed::AssignFeedVar(scope);
  // set rank offset memory
  int phase = GetCurrentPhase();  // join: 1, update: 0
  if (enable_pv_merge_ && phase == 1) {
    rank_offset_ = scope.FindVar(rank_offset_name_)->GetMutable<LoDTensor>();
  }
}

void PaddleBoxDataFeed::PutToFeedVec(const std::vector<PvInstance>& pv_vec) {
#ifdef _LINUX
  int ins_number = 0;
  std::vector<Record*> ins_vec;
  for (auto& pv : pv_vec) {
    ins_number += pv->ads.size();
    for (auto ins : pv->ads) {
      ins_vec.push_back(ins);
    }
  }
  GetRankOffset(pv_vec, ins_number);
  PutToFeedVec(ins_vec);
#endif
}

int PaddleBoxDataFeed::GetCurrentPhase() {
#ifdef PADDLE_WITH_BOX_PS
  auto box_ptr = paddle::framework::BoxWrapper::GetInstance();
  return box_ptr->PassFlag();  // join: 1, update: 0
#else
  LOG(WARNING) << "It should be complied with BOX_PS...";
  return current_phase_;
#endif
}

void PaddleBoxDataFeed::PutToFeedVec(const std::vector<Record*>& ins_vec) {
#ifdef _LINUX
  std::vector<std::vector<float>> batch_float_feasigns(use_slots_.size(),
                                                       std::vector<float>());
  std::vector<std::vector<uint64_t>> batch_uint64_feasigns(
      use_slots_.size(), std::vector<uint64_t>());
  std::vector<std::vector<size_t>> offset(use_slots_.size(),
                                          std::vector<size_t>{0});
  std::vector<bool> visit(use_slots_.size(), false);
  ins_content_vec_.clear();
  ins_content_vec_.reserve(ins_vec.size());
  ins_id_vec_.clear();
  ins_id_vec_.reserve(ins_vec.size());
  for (size_t i = 0; i < ins_vec.size(); ++i) {
    auto r = ins_vec[i];
    ins_id_vec_.push_back(r->ins_id_);
    ins_content_vec_.push_back(r->content_);
    for (auto& item : r->float_feasigns_) {
      batch_float_feasigns[item.slot()].push_back(item.sign().float_feasign_);
      visit[item.slot()] = true;
    }
    for (auto& item : r->uint64_feasigns_) {
      batch_uint64_feasigns[item.slot()].push_back(item.sign().uint64_feasign_);
      visit[item.slot()] = true;
    }
    for (size_t j = 0; j < use_slots_.size(); ++j) {
      const auto& type = all_slots_type_[j];
      if (visit[j]) {
        visit[j] = false;
      } else {
        // fill slot value with default value 0
        if (type[0] == 'f') {  // float
          batch_float_feasigns[j].push_back(0.0);
        } else if (type[0] == 'u') {  // uint64
          batch_uint64_feasigns[j].push_back(0);
        }
      }
      // get offset of this ins in this slot
      if (type[0] == 'f') {  // float
        offset[j].push_back(batch_float_feasigns[j].size());
      } else if (type[0] == 'u') {  // uint64
        offset[j].push_back(batch_uint64_feasigns[j].size());
      }
    }
  }

  for (size_t i = 0; i < use_slots_.size(); ++i) {
    if (feed_vec_[i] == nullptr) {
      continue;
    }
    int total_instance = offset[i].back();
    const auto& type = all_slots_type_[i];
    if (type[0] == 'f') {  // float
      float* feasign = batch_float_feasigns[i].data();
      float* tensor_ptr =
          feed_vec_[i]->mutable_data<float>({total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float));
    } else if (type[0] == 'u') {  // uint64
      // no uint64_t type in paddlepaddle
      uint64_t* feasign = batch_uint64_feasigns[i].data();
      int64_t* tensor_ptr = feed_vec_[i]->mutable_data<int64_t>(
          {total_instance, 1}, this->place_);
      CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t));
    }
    auto& slot_offset = offset[i];
    LoD data_lod{slot_offset};
    feed_vec_[i]->set_lod(data_lod);
    if (use_slots_is_dense_[i]) {
      if (inductive_shape_index_[i] != -1) {
        use_slots_shape_[i][inductive_shape_index_[i]] =
            total_instance / total_dims_without_inductive_[i];
      }
      feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i]));
    }
  }
#endif
}

W
Wang Guibao 已提交
1581 1582
}  // namespace framework
}  // namespace paddle