adam_op.cc 7.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/adam_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20
using Tensor = framework::Tensor;
21

Y
Yibing Liu 已提交
22
void AdamOp::InferShape(framework::InferShapeContext* ctx) const {
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("Param"), true,
      platform::errors::NotFound("Input(Param) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("Grad"), true,
      platform::errors::NotFound("Input(Grad) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Moment1"), true,
                    platform::errors::NotFound(
                        "Input(Moment1) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Moment2"), true,
                    platform::errors::NotFound(
                        "Input(Moment2) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("LearningRate"), true,
                    platform::errors::NotFound(
                        "Input(LearningRate) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Beta1Pow"), true,
                    platform::errors::NotFound(
                        "Input(Beta1Pow) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasInput("Beta2Pow"), true,
                    platform::errors::NotFound(
                        "Input(Beta2Pow) of AdamOp should not be null."));

  if (ctx->IsRuntime() && ctx->HasInput("Beta1Tensor")) {
    auto beta1 = ctx->Inputs("Beta1Tensor");
    PADDLE_ENFORCE_EQ(
        beta1.size(), 1,
        platform::errors::InvalidArgument("Input(Beta1Tensor) size must be 1"));
  }
  if (ctx->IsRuntime() && ctx->HasInput("Beta2Tensor")) {
    auto beta2 = ctx->Inputs("Beta2Tensor");
    PADDLE_ENFORCE_EQ(
        beta2.size(), 1,
        platform::errors::InvalidArgument("Input(Beta2Tensor) size must be 1"));
  }

  PADDLE_ENFORCE_EQ(ctx->HasOutput("ParamOut"), true,
                    platform::errors::NotFound(
                        "Output(ParamOut) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Moment1Out"), true,
                    platform::errors::NotFound(
                        "Output(Moment1Out) of AdamOp should not be null."));
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Moment2Out"), true,
                    platform::errors::NotFound(
                        "Output(Moment2Out) of AdamOp should not be null."));
67

Y
Yibing Liu 已提交
68
  auto lr_dims = ctx->GetInputDim("LearningRate");
69 70 71 72 73
  PADDLE_ENFORCE_NE(framework::product(lr_dims), 0,
                    "Maybe the Input variable LearningRate has not "
                    "been initialized. You may need to confirm "
                    "if you put exe.run(startup_program) "
                    "after optimizer.minimize function.");
Y
Yibing Liu 已提交
74 75 76 77 78 79 80 81
  PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
                    "Learning rate should have 1 dimension");
  auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow");
  PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1,
                    "Beta1 power accumulator should have 1 dimension");
  auto beta2_pow_dims = ctx->GetInputDim("Beta2Pow");
  PADDLE_ENFORCE_EQ(framework::product(beta2_pow_dims), 1,
                    "Beta2 power accumulator should have 1 dimension");
82

Y
Yibing Liu 已提交
83 84 85
  auto param_dims = ctx->GetInputDim("Param");
  if (ctx->GetInputsVarType("Grad")[0] ==
      framework::proto::VarType::LOD_TENSOR) {
86
    PADDLE_ENFORCE_EQ(
Y
Yibing Liu 已提交
87 88
        param_dims, ctx->GetInputDim("Grad"),
        "Param and Grad input of AdamOp should have same dimension");
89
  }
Y
Yibing Liu 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103
  PADDLE_ENFORCE_EQ(
      param_dims, ctx->GetInputDim("Moment1"),
      "Param and Moment1 input of AdamOp should have same dimension");
  PADDLE_ENFORCE_EQ(
      param_dims, ctx->GetInputDim("Moment2"),
      "Param and Moment2 input of AdamOp should have same dimension");

  ctx->SetOutputDim("ParamOut", param_dims);
  ctx->SetOutputDim("Moment1Out", param_dims);
  ctx->SetOutputDim("Moment2Out", param_dims);
}

framework::OpKernelType AdamOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
104
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Param");
Y
Yibing Liu 已提交
105 106
  return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
107 108 109

class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
110
  void Make() override {
111 112 113 114 115 116 117 118
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("LearningRate", "(Tensor) Learning rate");
    AddInput("Moment1", "(Tensor) Input first moment");
    AddInput("Moment2", "(Tensor) Input second moment");
    AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
    AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator");

119 120 121 122 123 124 125 126 127 128 129
    AddInput("Beta1Tensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as beta1, this has a higher priority than attr(beta1), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();
    AddInput("Beta2Tensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as beta2, this has a higher priority than attr(beta2), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();

130 131 132
    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("Moment1Out", "(Tensor) Output first moment");
    AddOutput("Moment2Out", "(Tensor) Output second moment");
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    AddAttr<float>("beta1",
                   "(float, default 0.9) "
                   "Exponential decay rate for the "
                   "first moment estimates.")
        .SetDefault(0.9f);
    AddAttr<float>("beta2",
                   "(float, default 0.999) "
                   "exponential decay rate for the "
                   "second moment estimates.")
        .SetDefault(0.999f);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-8) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-8f);
Q
Qiao Longfei 已提交
148
    AddAttr<bool>(
Q
Qiao Longfei 已提交
149
        "lazy_mode",
Q
Qiao Longfei 已提交
150 151 152
        "(bool, default false) "
        "only update the parameter that has gradient in sparse update")
        .SetDefault(false);
153 154 155 156 157 158
    AddAttr<int64_t>("min_row_size_to_use_multithread",
                     "(int64_t, default 0) "
                     "when not zero, if param row size is larger then "
                     "min_row_size_to_use_multithread and "
                     "inner_op_parallelism is larger then 0, sparse update "
                     "will run in multithread mode")
159
        .SetDefault(1000);
160 161

    AddComment(R"DOC(
162
Adam Optimizer.
163 164

This implements the Adam optimizer from Section 2 of the Adam
165 166 167
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
168 169 170

Adam updates:

171 172 173 174 175 176 177
$$
moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\
moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\
learning\_rate = learning\_rate *
                  \frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
$$
178 179 180 181 182 183 184 185 186

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adam, ops::AdamOp, ops::AdamOpMaker);
Q
QI JUN 已提交
187 188 189
REGISTER_OP_CPU_KERNEL(
    adam, ops::AdamOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdamOpKernel<paddle::platform::CPUDeviceContext, double>);